
Master Energy Equation

1 Thrust Loading vs Wing Loading

The thrust loading or thrust-to-weight ratio (T/W) is calculated by dividing
the total thrust generated by the aircraft’s engines by the total weight of the aircraft.
This ratio is a key indicator of the aircraft’s ability to accelerate and climb. A higher
thrust-to-weight ratio means the aircraft can produce more thrust relative to its weight,
leading to better performance in terms of acceleration and climb rate. Conversely, a
lower thrust-to-weight ratio indicates less thrust for a given weight, resulting in reduced
performance.

Wing loading in aircraft design is a measure of the distribution of weight (or load)
over the wing area. It’s a crucial factor in determining an aircraft’s flight characteristics,
including its lift, speed, and maneuverability. The wing loading is calculated by dividing
the total weight of the aircraft by the wing area. This ratio is usually expressed in
pounds per square foot (psf) or kilograms per square meter (kg/m²).

A few key aspects of how wing loading affects aircraft performance include:

1. Lift and Stall Speed: Higher wing loading means the aircraft must travel faster
to generate enough lift to take off or stay airborne. This results in a higher stall
speed (the minimum speed at which the aircraft can fly without losing lift). Lower
wing loading allows the aircraft to take off and land at lower speeds, making it
more suitable for short runways.

2. Maneuverability: Aircraft with lower wing loading tend to be more maneu-
verable and have better low-speed handling characteristics. This is crucial for
aircraft that need to perform tight turns or fly at low speeds, such as fighter jets
or stunt planes.

3. Ride Comfort: Higher wing loading generally provides a smoother ride in tur-
bulent conditions, as the aircraft is less affected by air pockets and gusts. This is
often a consideration in the design of commercial airliners.

4. Efficiency: Wing loading also impacts the aerodynamic efficiency of an aircraft.
A higher wing loading can lead to reduced drag and improved fuel efficiency during
cruise, which is a critical factor for long-range commercial aircraft.

Thrust loading vs wing loading for cargo and passenger aircraft:
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Figure 1: Cargo and passenger aircraft

This plot is also called constraint analysis plot, as shown below:

Figure 2: Constraint Plot

In this plot, the constraint analysis can be visualized to identify the solution space,
and the performance constraints and requirements are set as functions of Thrust Load-
ing and Wing Loading.
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2 Aircraft Sizing

The traditional aircraft sizing process is shown below:

Figure 3: Constraint Plot

3 Energy Balance of the System

3.1 Overview

Before all the calculations, the assumptions are needed to specify:

1. Aircraft is represented as a moving point mass

2. Installed thrust and aerodynamic drag act in the same direction as the velocity

The energy balance could be expressed as:

(T − (D +R))V = W
dh

dt
+

W

g0

d

dt
(
V 2

2
) (1)

Here:

1. T: Thrust

2. D: Induced drag and parasite drag

3. R: Drag due to non-clean configuration

4. V: Velocity

5. W: Weight

6. h: Height
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3.2 Induced Drag

Induced drag is a type of aerodynamic drag that occurs as a result of the creation
of lift on a wing or airfoil. It arises due to the pressure differences between the top and
bottom surfaces of a wing as it generates lift. High pressure on the bottom and low pres-
sure on the top create a pattern of airflow that results in vortices at the wingtips. These
vortices cause the air to circulate around the wingtip from bottom to top, reducing the
effective angle of attack of the wing and tilting the resultant lift vector rearwards. This
rearward component of the lift vector is what is experienced as induced drag.

At low airspeeds or high angles of attack (like during takeoff and landing), induced
drag is higher due to the increased strength of the wingtip vortices. Here are the
explanation:

1. Lift: At lower speeds, an aircraft must generate the same amount of lift to
counteract its weight and stay airborne. Because lift is a product of the airspeed,
air density, wing area, and the lift coefficient, when the airspeed decreases, the
aircraft must increase the lift coefficient to maintain the same lift. This is typically
achieved by increasing the angle of attack.

2. Angle of Attack: As the angle of attack increases to compensate for lower
airspeeds, the pressure differential between the upper and lower wing surfaces
becomes greater. This difference is what produces lift, but it also intensifies
the wingtip vortices, which are a primary cause of induced drag. These vortices
represent a circulation of air that effectively ’spills’ from the high-pressure area
below the wing to the low-pressure area above at the wingtips.

3. Downwash: The increased wingtip vortices at lower speeds create more down-
wash behind the wings, which tilts the total aerodynamic force backwards, thus
increasing the backward (drag) component of this force, known as induced drag.

3.3 Parasite Drag

Parasite drag is a type of aerodynamic drag that is not associated with the pro-
duction of lift and it increases with the square of the aircraft’s velocity. Usually it
contains:

1. Form Drag: This results from the shape of the aircraft and its components. Air
flowing over and around the body of the aircraft creates pressure differences and
turbulence that contribute to resistance. Streamlined shapes are used to reduce
form drag.

2. Skin Friction Drag: As air flows over the surface of the aircraft, it creates a
layer of air that sticks to the surface, known as the boundary layer. The viscosity
of the air within this layer causes resistance against the movement of the aircraft,
which is skin friction drag.

3. Interference Drag: Occurs when varying currents of air over the aircraft meet
and interact, typically at the junction between different parts of the aircraft (like
the wing and the fuselage). These interactions can cause additional turbulence
and drag.
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3.4 Total Drag

Based on the previous analysis, when the speed is increasing, parasite drag will
increase but induced drag will decrease. The total drag change is shown below:

Figure 4: Total Drag

4 Derivation

Dimensionless form of the energy equation:

T − (D +R)

W
=

1

V

d

dt
(h+

V 2

2g0
) (2)

If the left hand side is multiplied by velocity, we getweight specific excess power,
as shown below:

V · T − (D +R)

W
= Ps =

d

dt
(h+

V 2

2g0
) =

dze
dt

(3)

Here ze represents the sum of instantaneous potential and kinetic energies of the
aircraft and usually referred to as ”energy height”.

Aircraft engines are typically rated for their performance at sea level conditions
because it provides a standard, consistent baseline. However, the actual performance
of an engine in flight varies significantly with altitude due to changes in air density
and temperature. By correcting sea level thrust for lapse rate, engineers and pilots can
more accurately predict how an engine will perform in the less dense and colder air at
cruising altitudes. Therefore, we need to correct the sea level thrust using lapse rate:

T = αTSL (4)

@TSJ: sijian@umich.edu 5

https://www.tsj.bio/HTML_Files/Academics/Aerospace_Engineering/Aircraft_Design/FixedWing/FixedWing_Atmosphere.pdf


Fixed Wing Design · Master Energy Equation

The weight of an aircraft varies significantly during a flight due to fuel burn. As fuel
is consumed, the aircraft becomes lighter, which affects its performance characteristics,
such as takeoff distance, climb rate, cruising altitude, and fuel efficiency. Therefore, we
need to correct weight using fuel/payload correction:

W = βWTO (5)

Therefore:

αTSL − (D +R)

βWTO
=

1

V

d

dt
(h+

V 2

2g0
) (6)

TSL

WTO
=

β

α
((
D +R

βWTO
) +

1

V

d

dt
(h+

V 2

2g0
)) (7)

5 Master Equation

5.1 Lift

Some expressions for lift:

L = nW = qCLS (8)

Here:

1. n: load factor, n = 1 for straight and level flight

2. q: dynamic pressure, 1
2
ρV 2

3. S: wing area

Therefore we can get:

CL =
nW

qS
=

nβ

q
(
WTO

S
) (9)

5.2 Drag

The expression for drag is:

D = qCDS (10)

The parabolic lift-drag polar equation is shown below:

CD = K1C
2
L +K2CL + CD0

(11)

Substitute CD and CL:

D = qS(K1C
2
L +K2CL + CD0

) (12)

D = qS(K1(
nβ

q

WTO

S
)2 +K2(

nβ

q

WTO

S
) + CD0

) (13)
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5.3 Master Equation

Combine all of this, we get the master equation:

TSL

Wto

=
β

α

{
qS

βWto

[
K1

(
nβWto

qS

)2

+K2

(
nβWto

qS

)
+ CDo +

R

qS

]
+

1

V

d

dt

(
h+

V 2

2go

)}
(14)

6 Case Study

6.1 Case 1: Constant Altitude/Speed Cruise

Figure 5: Constant Altitude/Speed Cruise

The assumptions include:

1. dh
dt

= 0: Constant altitude

2. dV
dt

= 0: Constant Speed

3. n = 1: Lift equals weight

4. R = 0: Clean configuration

5. h&V : constant values

Now the master equation could be simplified to:

TSL

Wto
=

β

α

{
qS

βWto

[
K1

(
βWto

qS

)2

+K2

(
βWto

qS

)
+ CDo

]}
(15)

TSL

Wto

=
β

α

K1

(
β

q

Wto

S

)
︸ ︷︷ ︸

Linear Term

+ K2︸︷︷︸
Constant Term

+
CD0

β
q
Wto

S︸ ︷︷ ︸
Inverse Term

 (16)

Now, we go back to the constraint analysis plot:
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Figure 6: Case 1 Constraint Plot

To find the minimum thrust to weight ratio, we take the partial derivative with
respect to wing loading and set it equal to zero:

0 =
d

d
(
Wto

S

) [β
α

(
K1

β

q

(
Wto

S

)
+K2 +

CDo

β
q

(
Wto

S

))] (17)

Finally we can get:

WTO

S
=

q

β

√
CDo

K1

(18)

When the dynamic pressure q is very large (CD ≈ CD0), we have:

TSL

WTO
=

β

α

(
CDo

β
q

(
WTO

S

)) (19)

And therefore: (
TSL

WTO

)(
WTO

S

)
=

qCDo

α
(20)
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6.2 Case 2: Constant Speed Climb

Figure 7: Constant Speed Climb

The assumptions include:

1. dV
dt

= 0: Constant Speed

2. n ≈ 1: Lift approximately equals weight

3. R = 0: Not on the ground

4. h, dh
dt
, V : Values are given

After simplification, we get:

TSL

WTO
=

β

α

{
K1

β

q

(
WTO

S

)
+K2 +

CDo

β
q

(
WTO

S

) + 1

V

dh

dt

}
(21)

Comparing with case 1, case 2 only adds the final term climb rate, which is a
constant. The constraint plot is shown below:

Figure 8: Case 2 Constraint Plot
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Because the added term is a constant, the minimum thrust weight ratio appears at
the same value of wing loading as case 1, but the thrust weight ratio will be different.

6.3 Case 3: Constant Altitude/Speed Turn

6.3.1 Load Factor

Figure 9: Speed Turn

Here:

1. R: Turn radius

2. L: Lift

3. W : Weight

4. Fc: Centripetal force
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5. ϕ: Bank angle

Then, for a turn at constant altitude:

W = L cosϕ (22)

Then we define the load factor as:

n =
L

W
(23)

Based on the geometry rules, we have:

L2 = F 2
c +W 2 (24)

L2

W 2
=

F 2
c

W 2
+ 1 (25)

Now we get the expression for load factor:

L

W
=

√
F 2
c

W 2
+ 1 (26)

Recall that the centripetal force could be expressed as:

Fc = mac (27)

n = ((
mac
mg0

)2 + 1)
1
2 = ((

ac
g0
)2 + 1)

1
2 (28)

Recall that the definition of ac:

ac = ω2R =
V 2

R
= V ω (29)

Therefore we have 2 versions of expressions:

n = ((
ωV

g0
)2 + 1)

1
2 (30)

n = ((
V 2

g0R
)2 + 1)

1
2 (31)

6.3.2 Assumptions

The assumptions include:

1. dh
dt

= 0: Constant altitude

2. dV
dt

= 0: Constant speed

3. R = 0: Not on the ground

4. h, n, V : Values are given
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6.3.3 Derivation

Now the master equation could be simplified as:

TSL

Wto
=

β

α

{
K1n

2β

q

(
Wto

S

)
+K2n+

CDo

β
q

(
Wto

S

)} (32)

Also take the derivative of the wing loading, we know at the minimum thrust weight
ratio, the wing loading expression is a function of load factor:

Wto

S
=

q

nβ

√
CDo

K1
(33)

The constraint plot is shown below:

Figure 10: Case 3 Constraint Plot

6.4 Case 4: Horizontal Acceleration

The assumptions of this case include:

1. n ≈ 1: Lift approximately equals weight

2. R = 0: Clean Configuration

3. dh/dt, h, t: Values are given

Now the master equation is simplified as:

TSL

WTO
=

β

α

[
K1

β

q

(
WTO

S

)
+K2 +

CD0

β
q

(
WTO

S

) + 1

g0

dV

dt

]
(34)
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The additional constant term is to define an acceleration constraint:

1

g0

dV

dt
=

1

g0

(
VFinal − VInitial

∆tAllowable

)
(35)

The constraint plot is shown below:

Figure 11: Case 4 Constraint Plot

6.5 Case 5: Takeoff Ground Roll (lots of thrust)

Figure 12: Case 5

The assumptions of this case include:

1. dh
dt

= 0: Constant altitude

2. R ̸= 0: Not clean configuration + Ground

3. Thrust is very large

At this case, we assume that thrust at take off is much larger than the drag, so the
drag-related terms can be eliminated. Therefore, the master equation is simplified to:
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TSL

WTO
=

β

αg0

dV

dt
=

β

αg0

dV

ds/V
(36)

Solving for ds yields:

ds =
β

αgo

(
WTO

TSL

)
V dV (37)

If the takeoff ground roll distance sG and the takeoff velocity VTO are given,
then start from s = 0, V = 0 to do the integration we get:

sG =
β

α

(
WTO

TSL

)
V 2
TO

2go
(38)

Usually take off velocity is defined through the stall velocity, with a safety constant
kTO > 1 (usually 1.2 - 1.3):

VTO = kTOVSTALL (39)

Using the maximum lift conditions, we get:

qCLmax
S =

1

2
ρV 2

STALLCLmax
S = βWTO (40)

Combine all the equations together, we get:

TSL

WTO
=

β2

α

k2TO
sGρgoCLmax

(
WTO

S

)
(41)

6.6 Case 6: Takeoff Ground Roll (not so much thrust)

Figure 13: Case 6

The assumptions of this case include:

1. dh
dt

= 0 Constant altitude

2. n ≈ 1: Lift approximately equals weight
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3. D = qCDS: Drag calculation

Based on this assumption, the master equation could be simplified to:

TSL

WTO
=

β

α

(
D +R

βWTO
+

1

V

d

dt

(
V 2

2go

))
(42)

In this case, because thrust is in the order of magnitude of the drag and resistance
forces, so we express the resistance due to ground friction and non-clean configuration:

R = qCDRS + µTO(βWTO − qCLS) (43)

Combine with the drag term:

D +R

βWTO
= (CD + CDR − µTOCL) qS + µTO

βWTO

βWTO
(44)

Rearrange:

TSL

WTO
=

β

α

{
ξTO

q

β

(
S

WTO

)
+ µTO +

1

go

dV

dt

}
(45)

Where:

ξTO = (CD + CDR − µTOCL) (46)

Same integration as Case 5, we get:

sG = −
β
(
WTO

S

)
ρgoξTO

ln

1− ξTO

[αβ

(
TSL

WTO

)
− µTO]

CLmax

k2TO

 (47)

In the limit as all terms in ξTO go to zero, and ln(1 − ϵ) goes to −ϵ, then we have
the expression:

sG →
β
(
WTO

S

)
ρgoξTO

 ξTO
α
β

(
TSL

WTO

)
CLmax

k2TO

 (48)

Then we can also solve:

TSL

WTO
→ β2

α

k2TO
sGρgoCLmax

(
WTO

S

)
(49)
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6.6.1 Obstacle not cleared during the transition

Figure 14: Case A

Now we take a look at each distance.

1. Rotation Distance: Distance to rotate is calculated as the product of rotation
time and velocity during rotation:

sR = tRVTO (50)

Normally the time is 3 seconds for modern aircraft. The take off velocity could
also be expressed in terms of the definition of lift. For takeoff lift:

LTO =
1

2
ρV 2

TOSCL−TO = W (51)

For maximum lift:

VTO = kTO

√(
WTO

S

)
2β

ρCLmax

(52)

Then the rotation distance could be expressed as:

sR = tRVTO = tRkTO

√(
2β

ρCLmax

)(
WTO

S

)
(53)

2. Transition Distance: is defined as the distance that necessary to bring the
aircraft to its climb angle:

sTR = RC sin θCL (54)
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The radius of the transition arch could be expressed in terms of takeoff velocity:

RC =
V 2
TO

g0(0.8k2TO − 1)
(55)

Therefore, the transition distance could be expressed as:

sTR =
k2TO sin θCL

go(0.8k2TO − 1)

2β

ρCLmax

WTO

S
(56)

3. Distance to clear obstacle: Outside the turn to climb, the flight path is a
straight line at an angle to the ground defined by the vehicle climb angle. There-
fore:

Sobs =
hobs − hTR

tan θCL
(57)

The climb angle is defined by climb rate and velocity:

1

V

dh

dt
= sin θCL =

T −D

W
(58)

Altitude at the end of transition could be expressed as:

hTR =
V 2
TO(1− cos θCL)

go(0.8k2TO − 1)
=

k2TO(1− cos θCL)

go(0.8k2TO − 1)

2β

ρCLmax

WTO

S
(59)

6.6.2 Obstacle cleared during the transition

Figure 15: Case B

The total takeoff distance expression is the same:
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STO = SG + SR + Sobs (60)

The distance to required height expression is nearly the same:

Sobs = RC sin θobs =
V 2
TO sin θobs

go(0.8k2TO − 1)
(61)

Where:

θobs = cos−1

(
1− hobs

RC

)
(62)

6.7 Case 7: Braking Roll

Figure 16: Case 7

The assumptions for this case:

1. dh
dt

= 0: Constant altitude

2. n ≈ 1: Lift approximately equals weight

3. D = qCDS

Then, the master equation is simplified as:

TSL

WTO
=

β

α

(
D +R

βWTO
+

1

V

d

dt

(
V 2

2go

))
(63)

In this case, the resistance expression due to ground friction/braking and aerody-
namic braking is:

R = qCDRS + µB(BWTO − qCLS) (64)

Then the complete drag term could be re-written as:

D +R

βWTO
=

(CD + CDR + µBCL)qS + µBβWTO

βWTO
(65)

Then the master equation could be rearranged as:
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TSL =
β

α

(
ξL

q

β

(
S

WTO

)
+ µB +

1

go

dV

dt

)
(66)

Here, we have:

ξL = (CD + CDR − µBCL) (67)

Similar with case 6, now we integrate over s = 0, V = VTD (touch down velocity) to
full stop conditions s = sB, V = 0. The final expression is:

SB =
β

ρg(CD + CDR − µBCL)

(
WTO

S

)
ln

1 +
 (CD + CDR − µBCL)

[ (−α)
β

(
TSL

WTO

)
+ µB]

CLmax

k2TD


(68)

In this case, β will be the value at the end of the mission. −α is used to model
thrust reversers, this value of α should be representative of the fraction of thrust that
is effective reversed, usually 0.65-0.85 for commercial airliners.

If the thrust reverser (−α) is large enough, the expression will be simplified as:

SB →
(
β(WTO/S)

ρg0ξL

) ξL
(−α)TSL

βWTO

CLmax

k2TD

 (69)

In this case, we can solve the constraint ratio as:

TSL

WTO
→
(

β2

−α

)(
k2TD

SBρg0CLmax

)(
WTO

S

)
(70)

Figure 17: Total Landing Distance

The total landing distance is calculated as the sum of the approach distance, the
free roll distance and the braking roll distance (discussed). kTD is defined from the
preceding segment.

1. Approach Distance: Given the landing clearance obstacle height hobs, safety
factor for approach kobs, and the safety factor for touch down kTD, we have
the expression as:
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SA =
2β

ρg0(CD + CDR)

(
WTO

S

)(
k2
obs − k2

TD

k2
obs + k2

TD

)
+

CLmax

CD + CDR

2hobs

k2
obs + k2

TD

(71)

Notice here kobs defines the velocity when clearing the landing obstacle height Vobs

in terms of the stall velocity VSTALL. Vobs and Vapp are used interchangeably:

Vobs = kobsVSTALL = Vapp = kappVSTALL (72)

Recall the expression of VSTALL:

Vapp = kappVstall = kapp

√
2β

ρCLmax

(
WTO

S

)
(73)

2. Free Roll Distance

Usually the difference between approach and touchdown velocity is very small,
but touchdown velocity could be expressed using stall velocity and kTD:

VTD = kTDVstall = kTD

√
2β

ρCLmax

(
WTO

S

)
(74)

If we assume the velocity at touchdown does not diminish during free roll, the
free roll distance is calculated as a product of the free roll time (usually 3s) and
the touch down velocity:

SFR = tFRVTD = tFRkTD

√
2β

ρCLmax

(
WTO

S

)
(75)

6.8 Case 8: Service Ceiling

Figure 18: Case 8

Service ceiling is the altitude at which an aircraft’s maximum climb rate has a
specific value. The assumptions of this case include:

1. dV
dt

= 0: No acceleration
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2. n = 1: Straight and level

3. R = 0: Clean configuration

4. Ps =
dh
dt

> 0: value is given

5. h,CL are given

The master equation is transferred to:

TSL

WTO
=

β

α

[
K1

β

q

(
WTO

S

)
+K2 +

CD0

β
q (

WTO

qS )
+

1

V

dh

dt

]
(76)

The operating conditions for service ceiling may be determined by lift coefficient or
by velocity for a given altitude and climb rate. If V is known:

CL =
β

q

(
WTO

S

)
=

β
1
2ρV

2

(
WTO

S

)
(77)

If CL is known:

V =

√
2β

σρSLCL

(
WTO

S

)
(78)

When V and CL are known, the equation could be reduced as:

TSL

WTO
=

β

α

{
K1CL +K2 +

CD0

CL
+

(
1

V

dh

dt

)}
(79)
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