

Airborne Wind Electric Generator (AWEG) PLACIS Grand Challenge

Michael Anderson, Kreston Barron, James Reynolds

Georgialnstitute of Technology

- Climate change is causing extreme weather patterns
- There is a need for "green" energy
- Wind Energy
 - Wind energy is a substantial source of renewable energy
 - Wind energy represents a potential entirely green source of energy
 - Available wind energy exceeds the energy supplied by the sun

Background and Motivation

- Wind power density at 10,000 m is on average over five times larger than that at 1,000 m" [1]
 - The use of high altitude provides more power than through groundbased systems
 - Also reduces the majority of location limitations

Altitude = 1,000m

Altitude = 10,000m

0.01 (0.02 0.0	03 0.05	0.1	0.2	0.3	0.5	1	2	3	5	10	

Step 2: Define the Problem

Georgialnstitute of Technology

Background and Motivation

Many concepts being researched by various companies/groups

- Glider creates energy by pulling tether connected to ground based generator (Ampyx Power)
- Sails used to pull tether connected to ground based generator (Sky Sails)
- Tethered unmanned aircraft with onboard turbines (Makani Power, Joby Inc.)

- This study looks at Sky WindPower's concept of hovering Autogryo with generators placed on rotor
 - Rotors onboard both generate lift and generate power through excess wind energy
 - Tether is used to transmit power generated to the ground

- 4 rotor design
- Rotor Diameter: 10.7 m
- Operational Altitude: 4600m
- Mass: 520 kg
- Max. operational wind speed: 35 m/s

https://youtu.be/UxHgAPIPAGs

Operational Architecture

Step 3: Establish Value

Georgialnstitute of Technology

Sky

VINDPOWER

Georgialnstitute of Technology

Overall Evaluation Criteria (OEC)

$$OEC = \frac{\alpha \left(\frac{Rotor}{Rotor_{Baseline}}\right) + \beta \left(\frac{Overall}{Overall_{Baseline}}\right) + \gamma \left(\frac{Generator}{Generator_{Baseline}}\right) + \delta \left(\frac{Tether}{Tether_{Baseline}}\right) + \varepsilon \left(\frac{Miscellaneous}{Miscellaneous}\right)}{\frac{Life Cycle Cost}{Life Cycle Cost}}$$

$$\alpha = \sum_{i=1}^{N} weight_{Rotor_{i}} = 0.32 \qquad \gamma = \sum_{i=1}^{N} weight_{Generator_{i}} = 0.17 \qquad \varepsilon = \sum_{i=1}^{N} weight_{Misc_{i}} = 0.23$$

$$\beta = \sum_{i=1}^{N} weight_{Overall_{i}} = 0.17 \qquad \delta = \sum_{i=1}^{N} weight_{Tether_{i}} = 0.11 \qquad \varepsilon = \sum_{i=1}^{N} weight_{Misc_{i}} = 0.23$$

Functional Requirements	Element	Weight	Baseline	Target	Variance	Units
	# of Rotors		4	4	0.00	
Rotor Characteristics (α)	# of Blades	0.31	2	4	2.00	
	Solidity		0.05	0.10	0.05	
Overall System (B)	Total Thrust	0 17	5.10	5.50	0.40	kN
Overall System (p)	Gross Weight	0.17	520	500	-20.00	kg
Electric Concrator (v)	Power Generation Efficiency	0 17	0.5	0.56	0.06	Betz limit = 0.59
Electric Generator (y)	Capacity Factor	0.17	0.7	0.8	0.10	
To the characteristics (δ)	Tether Efficiency	0.11	0.9	0.95	0.05	
	Tether Strength	0.11	10	15	5.00	MYuri (N/kg/m)
Miscollanoous (s)	Average Wind Speed	0.23	20	25	5.00	m/s
	Peak Wind 0.23		30	35	5.00	m/s
Functional Requirements Value	2.79					
Cost	Life Cycle	1	\$820,000.00	\$800,000.00	-20000.00	dollars
Cost Value	0.98					
OEC	2.86					

Step 4: Generate Feasible Alternatives

3KY

/INDPOWER

Morphological Matrix

	Characteristic			Alternatives	;		Total
	Number of Rotors	3	4	5			3
tion	Number of Blades	2	3	4	5		4
igura	Rotor Taper	Yes	No				2
Confi	Rotor Twist	Linear	Non-Linear	None			3
ical	Rotor Solidity	Low	Moderate	High			3
Phys	Hinge Type	Teeter	Flapping	Lead/Lag	Fully Articulated		4
	Tether Material	Metal	Composite				2
_	Fully Autonomous	Yes	No				2
ontro	Retractable for Severe Weather	Yes	No				2
Ŭ	Pitch Control	Collective	Collective & Cyclic				2
/er ation	Power Generation Method	Tether Pull	Autogyro	Circular Flight			3
Pow Gener	Power Generation Location	Airborne	Ground Station				2
sion file	Operating Altitude	500 ft	1000 ft	2000 ft	3000 ft	15000 ft	5
Miss	Operating Location	Land	Sea	Either			3
					Total Alte	rnatives	1,244,160

Step 5: Evaluate Alternatives

Pugh Matrix

	Alternative 1 (Blade Count Increase, No Taper, Hinge, Tether Material, Altitude)	Alternative 2 (Twist, Altitude)	Alternative 3 (Rotor Count, Blade Count, Hinge, Tether Material, Power Generation)	Baseline
Power Generation	+	+	+	
Power Generating Efficiency	-	+	-	
Power Utilization	S	S	S	
Capacity Factor	-	+	-	
Total Thrust	+	S	+	
Gross Weight	-	-	-	
System Dynamics and Control System	S	S	-	
Tether Efficiency	+	S	+	
Tether Strength	-	S	-	
Average Wind Speed	+	+	S	n
Peak Wind	+	+	S	It
Reliability	-	S	-	(D)
Acquistion Cost	-	-	-	\cap
Maintenance and Sustainabiltiy Cost	-	-	-	
Σ+	5	5	3	
Σ-	7	3	8	
ΣS	2	6	3	
Sum	-2	2	-5	

Step 6: Make Decision

Georgialnstitute of Technology

Sky

VINDPOWER

TOPSIS Decision

	Power Generation	Power Generation Efficiency	Power Utilization	Capacity Factor	Total Thrust	Gross Weight	System Dynamics and Control System	Tether Efficiency	Tether Strength	Average Wind Speed	Peak Wind	Reliability	Acquisition Cost	Maintenance and Sustainability Cost
Positive Ideal Soln	0.4508	0.7625	0.5774	0.7625	0.5232	0.8452	0.6509	0.4508	0.7625	0.6312	0.6312	0.8452	0.8452	0.8452
Negative Ideal Soln	0.6312	0.4575	0.5774	0.4575	0.6727	0.1690	0.3906	0.6312	0.4575	0.4508	0.4508	0.1690	0.1690	0.1690

		Separation from Positive Ideal	Separation from Negative Ideal	Closeness to Ideal Soln
ives	A/C1	0.0776	0.0794	0.5059
ernati	A/C2	0.0258	0.1496	0.8531
Alte	A/C3	0.1496	0.0258	0.1469

	Characteristic	Alternative 2
	Number of Rotors	4
Ę	Number of Blades	2
al	Rotor Taper	Yes
nysic Figura	Rotor Twist	Non-Linear
a fu	Rotor Solidity	Low
ပ	Hinge Type	Flapping
	Tether Material	Metal
-	Fully Autonomous	Yes
contro	Retractable for Severe Weather	Yes
0	Pitch Control	Collective
/er ation	Power Generation Method	Autogyro
Pov Gener	Power Generation Location	Airborne
on ile	Operating Altitude	15000 ft
Missi Profi	Operating Location	Land

SDL

