
Isentropic Flow (Area Change)

1 Governing Equations

Recall the master equations, we have the mass conservation:
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And now we assume no viscous stress/friction (reversible), and no other
forces or work, then we have τx = 0, so:
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Combine these two equations, we get:
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If we further assume adiabatic (∂q = 0), then we get isentropic flow. Based
on the definition of speed of sound:

a2 =
dp

dρ
=

∂p

∂ρ
|s (6)

Therefore:
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Because this is derived using only mass, momentum conservation and speed of sound
definition, so it is valid for all simple compressible substances.
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2 Mach Number Dependence

2.1 Nozzle and Diffuser

From the equation above, we can conclude that:

1. For subsonic (M < 1): dA, dp have same signs, dA, du have opposite signs.

2. For supersonic (M > 1): dA, dp have opposite signs, dA, du have Same signs.

3. dp, du always have opposite signs.

Because of this, the nozzles and diffusers for subsonic and supersonic flow are dif-
ferent:

Figure 1: Subsonic and Supersonic Nozzles and Diffusers

2.2 Sonic Throat

If we want a transition from subsonic to supersonic (or vice versa), we need
to go through M = 1. The only two possible solutions are dA = 0 or du = ∞. However
the later is not physical possible, so we must have a maximum or minimum in area.

Figure 2: Maximum in Area

If we have maximum in area, when the subsonic flow goes in, it will decelerate and
never reach unit Mach number. When the supersonic flow goes in, it will accelerate
and never reach unit Mach number.
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Figure 3: Throat

If we have minimum in area, which is called throat. When subsonic flow goes in
it will accelerate to unit Mach number, then after passing the diverging section it
will keep accelerating to supersonic. When supersonic flow goes in it will decel-
erate to unit Mach number, then after passing the diverging section it will keep
decelerating to subsonic.

3 Area Ratio

For isentropic flow, we define the area at sonic point as A∗. Then based on mass
conservation:

ρuA = ρ∗u∗A∗ (8)

So we have:

A

A∗ =
ρ∗u∗

ρu
=

ρ∗

ρo

ρo
ρ

u∗

a

a

u
(9)

Because A∗ at sonic point, so u∗ = a∗. Then recall the stagnation property:
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At sonic point, we have:
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Also recall the stagnation property:
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Combine all the parts:
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Some numerical results are shown below:

Figure 4: Area Ratio

Some remarks:

1. There are always two isentropic solutions for given area ratio, one sub-
sonic and one supersonic.

2. A is always greater than A∗

3. The ratio of mass flux could be expressed as:
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Because A is always greater, so maximum mass flux at throat.
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4 Choked Flow

We can also express the mass flux using stagnation properties. Recall that:
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Using stagnation properties:
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Finally we have:
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For isentropic flow, all stagnation and sonic properties are constant, so
is mass flow rate.

Figure 5: Mass Flow Rate

For fixed stagnaton properties and flow area (but may not be isentropic),
the maximum mass flow rate appears at M = 1. If the geometry has a sonic throat,
then we can not alter mass flow rate by changing downstream conditions
(back pressure), which is called choked.
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Figure 6: Choked Flow

Now we consider a situation. For nozzle with fixed stagnation properties and ini-
tially sonic throat:

1. If we reduce throat Area: Ain/At will increase, if the flow initially is subsonic,
Mach number will increase. In this case throat stays sonic, and mass flow
rate will decrease due to the decrease of throat area (RHS of mass flow rate
equation is constant).

2. If we increase throat area: mass flow rate will increase due to same reason,
eventually throat can become not sonic, so the flow will be unchoked.

Therefore we can conclude that the maximum mass flow rate will at sonic throat
(M = 1):
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So if we want to increase mass flow rate, we can:

1. Increase throat area

2. Increase po or reduce To

The function f(γ, 1) is near 0.7 for γ = 1.4, so we get the rule of thumb for
choked gas flow:

ṁmax ≈ 0.7
po√
RTo

(25)

5 Isentropic Nozzles

The function of nozzle is to increase velocity of fluid and convert thermal en-
ergy to kinetic energy. Normally we have two types of nozzles, including converging
nozzle and converging-diverging (CD) nozzle.
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5.1 Converging Nozzle

Figure 7: Converging Nozzle

If we assume choked and isentropic flow, there are large change in pressure and
density as we approach throat, as shown below:

Figure 8: Converging Nozzle Profile

We use back pressure po/pb to determine whether flow in nozzle gets
choked (goes sonic).

Figure 9: Converging Nozzle Back Pressure
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Some remarks:

1. If po = pb, then there will be no flow.

2. If we lower pb from po, then Mach number at exit will keep rising until flow is
choked

3. When pe = p∗, mass flow rate reaches maximum.

So what is the critical back pressure required to go sonic in converging nozzle?
We know at this situation:
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When γ = 1.4, the approximate value is 0.528.

5.2 Converging-Diverging Nozzle

The geometry and the profile are shown below:

Figure 10: CD Nozzle

Similarly, we drop pb from po:
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Figure 11: CD Nozzle Back Pressure

Then the exit Mach number Me keeps rising and exit pressure pe keeps dropping
until flow is choked (Mt = 1). However, now still subsonic at exit.

After this point, if we lower pb more, nozzle will stay choked. If lower enough,
then we can get supersonic exit Mach number.
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