Master Equations

1 Problem Setup

Assume Quasi-1D, steady, no body forces and negligible viscous work flow,
as shown below:
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Figure 1: Problem Setup

2 Mass Conservation

Because we know the flow is steady:

m = const = puA (1)
0 =d(pud) (2)
0 = uAdp + pAdu + pudA (3)

Divide it by puA:

dp du dA dp 1d(u?) = dA
_dp_ du dA_dp 1d{)
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Recall the continuity equation:
Dp
_r . =0 5
oy TPV ) (5)

If steady flow:

Dp _dp  d(pu) d(pv)  d(pw)
o a Ty T ©)


https://www.tsj.bio/HTML_Files/Academics/Aerospace_Engineering/Fluid_Mechanics/Viscous_Flow/ViscousFlow_Continuity.pdf
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Because we assume 1D:

d(pu)
=0 7
. (7)
Also due to constant mass flow rate, this in other words means:
dA
— =0 8
. (8)

Therefore we can conclude that quasi steady only valid if area changes
slowly.

3 Momentum Conservation

Figure 2: Momentum Conservation

Same conditions, recall the expression for momentum conservation:

Z F= (mu)net (9)

We define right direction as positive direction, then:

Y F=-rLyds+F, (10)

Here 7, is the shear stress, with the unit as F'//A, and the unit of L,dz is A. For the
force from pressure F,, we divide it into 4 parts:

1. Surface 1:

(Fp)s1 = pA (11)
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2. Surface 2,4: This one is tricky. Because we only want the momentum in x
direction, so we need to use the normal cross section, which is —%*, here dA is
negative. Also, we assume the pressure acting at the middle point of the surface
as p+ %. Therefore:

d dA d
(Fara =2x —(p+ ) (=5) = (p+5)dA (1)
3. Surface 3:
(Fp)s3 = —(p+dp)(A + dA) (13)
Now we add all the surfaces:
dp
=pA+(p+ )dA + —(p+dp)(A+dA) (14)

Assume the second order term dpdA as 0, then we have:

F, = —Adp (15)
Therefore, we have:

— Ty Lpdr — Adp = () per = mdu = puAdu (16)
Rearrange and divide it by pA:

T. L d
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putde’ Ly, dp
R pAd+p =0 (18)

4 Energy Conservation
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Figure 3: Energy Conservation
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Recall the first law:

2

1
8q = dh, = dh + d(%) = ¢dT + Sdu? (19)
Therefore:
dq dT 1 5
g4 _ 8L d 20
oT T T 2e7™ (20)
Recall that:
R
¢y =~ e1)
v—1
Finally we have:
dI'  dq ~v—1 u?  du? (22)
T T 2 ~RT u?
Master Equations
Recall that:
= P pr (23)
 NRT’ p
We can rewrite the previous equations in terms of Mach number. Mass:
dp 1d(u®) dA
@t 0 24
p * 2 u? T A (24
Momentum:
vdu? 1, L dp
5 2 + b A T+ . (25)
Energy:
dI'  0q ~v—1_ ,du?
ot _ M 2%
T T 2 u? (26)
Also from ideal gas law:
dp = d(pRT) = pRdT + RTdp (27)
Therefore:
d R RT
L _Pgr + —dp (28)
p p p
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—=—+— (29)
Similarly, we have:

d(u?) = d(yRTM?) = yM*RdT + M*RTd~y +yRTdM?  (30)
Divide it by u?, we have:
du> dT'  dy dM?
2T Tt ae
u T v M
Therefore, we have 5 equations and 5 unknowns (M, p,u,p,T), and 3 given
inputs:

(31)

1. Area change: dA
2. Shear stress/friction: 7,

3. Heat transfer: 0g

We only get general analytic solutions if we specify one input, and let the other
two be 0, so we have 5 equations 5 unknowns.
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