
Master Equations

1 Problem Setup

Assume Quasi-1D, steady, no body forces and negligible viscous work flow,
as shown below:

Figure 1: Problem Setup

2 Mass Conservation

Because we know the flow is steady:

ṁ = const = ρuA (1)

0 = d(ρuA) (2)

0 = uAdρ+ ρAdu+ ρudA (3)

Divide it by ρuA:

0 =
dρ

ρ
+

du

u
+

dA

A
=

dρ

ρ
+

1

2

d(u2)

u2
+

dA

A
(4)

Recall the continuity equation:

Dρ

Dt
+ ρ(∇ · u) = 0 (5)

If steady flow:

Dρ

Dt
=

dρ

dt
+ [

d(ρu)

dx
+

d(ρv)

dy
+

d(ρw)

dz
] (6)
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Because we assume 1D:

d(ρu)

dx
= 0 (7)

Also due to constant mass flow rate, this in other words means:

dA

dx
= 0 (8)

Therefore we can conclude that quasi steady only valid if area changes
slowly.

3 Momentum Conservation

Figure 2: Momentum Conservation

Same conditions, recall the expression for momentum conservation:∑
F = (ṁu)net (9)

We define right direction as positive direction, then:∑
F = −τxLpdx+ Fp (10)

Here τx is the shear stress, with the unit as F/A, and the unit of Lpdx is A. For the
force from pressure Fp, we divide it into 4 parts:

1. Surface 1:
(Fp)s1 = pA (11)
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2. Surface 2,4: This one is tricky. Because we only want the momentum in x
direction, so we need to use the normal cross section, which is −dA

2
, here dA is

negative. Also, we assume the pressure acting at the middle point of the surface
as p+ dp

2
. Therefore:

(Fp)s2+s4 = 2×−(p+
dp

2
)(−dA

2
) = (p+

dp

2
)dA (12)

3. Surface 3:
(Fp)s3 = −(p+ dp)(A+ dA) (13)

Now we add all the surfaces:

Fp = pA+ (p+
dp

2
)dA+−(p+ dp)(A+ dA) (14)

Assume the second order term dpdA as 0, then we have:

Fp = −Adp (15)

Therefore, we have:

−τxLpdx− Adp = (ṁu)net = ṁdu = ρuAdu (16)

Rearrange and divide it by pA:

ρ

p
udu+

τx
p

Lp

A
dx+

dp

p
= 0 (17)

ρ

p

u2

2

du2

u2
+

τx
p

Lp

A
dx+

dp

p
= 0 (18)

4 Energy Conservation

Figure 3: Energy Conservation
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Recall the first law:

∂q = dho = dh+ d(
u2

2
) = cpdT +

1

2
du2 (19)

Therefore:

∂q

cpT
=

dT

T
+

1

2cpT
du2 (20)

Recall that:

cp =
γR

γ − 1
(21)

Finally we have:

dT

T
=

∂q

cpT
− γ − 1

2

u2

γRT

du2

u2
(22)

5 Master Equations

Recall that:

M 2 =
u2

γRT
,
p

ρ
= RT (23)

We can rewrite the previous equations in terms of Mach number. Mass:

dρ

ρ
+

1

2

d(u2)

u2
+

dA

A
= 0 (24)

Momentum:

M 2γ

2

du2

u2
+

τx
p

Lp

A
dx+

dp

p
= 0 (25)

Energy:

dT

T
=

∂q

cpT
− γ − 1

2
M 2du

2

u2
(26)

Also from ideal gas law:

dp = d(ρRT ) = ρRdT +RTdρ (27)

Therefore:

dp

p
=

ρR

p
dT +

RT

p
dρ (28)

@TSJ: sijian@umich.edu 4



Compressible Flow · Master Equations

dp

p
=

dT

T
+

dρ

ρ
(29)

Similarly, we have:

d(u2) = d(γRTM2) = γM 2RdT +M 2RTdγ + γRTdM2 (30)

Divide it by u2, we have:

du2

u2
=

dT

T
+

dγ

γ
+

dM 2

M 2
(31)

Therefore, we have 5 equations and 5 unknowns (M,ρ, u, p, T ), and 3 given
inputs:

1. Area change: dA

2. Shear stress/friction: τx

3. Heat transfer: ∂q

We only get general analytic solutions if we specify one input, and let the other
two be 0, so we have 5 equations 5 unknowns.
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