
Prandtl Meyer Wave

1 Overview

Figure 1: Expansion Case

In previous chapter, we examined supersonic over sharp, concave corners/turns,
and oblique shock allows flow to make that turn. Now what if the turn is convex or
gradual? Now the shock is impossible due to expansion.

Figure 2: Gradual Turn

Actually, if we take a close look, the gradual turn is made up of large umber
of infinitesimal turns, and each turn has infinitesimal flow change. Each turn is
produced by infinitesimal wave, which is called Mach wave.
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Figure 3: Wave Collapse

We assume the flow is uniform and isentropic between each turn, and the length
between each is arbitrary. Therefore, it could be zero length (sharp turn) and
waves collapse to one point. This is called Prandtl Meyer Fan. Notice that this is
an expansion, so streamlines get farther apart.

2 Problem Setup

Figure 4: Problem Setup

2.1 Problem

Given upstream conditions (M1) and turning angle (δ) to find downstream
conditions M2 and Mach number relations.

2.2 Equations

Mass, momentum, energy conservation, Mach number definition and state equa-
tions.

2.3 Assumptions

Steady flow, quasi-1D, reversible and adiabatic (isentropic).
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3 Mach Relations

3.1 Relation Between Velocity and Angles

Figure 5: Infinitesimal Change

We can start with single Mach wave that expands supersonic flow through an in-
finitesimal (differential) angle of magnitude dν. Here we define ν as Prandtl
Meyer Angle. Similar with oblique shocks approach, we divide the velocity into two
components (t, n). Also due to lack of pressure gradient tangent to wave gives ut

is constant across wave.
Therefore, using this relation:

ut,upstream = ut,downstream (1)

u cosµ = (u+ du) cos(µ+ dν) (2)

u cosµ = (u+ du)(cosµ cos dν − sinµ sin dν) (3)

Based on the assumption that:

dν → 0, dudν → 0 (4)

So we have:

cos dν → 1, sin dν → dν (5)

u cosµ = u cosµ− udν sinµ+ du cosµ− dudν sinµ (6)

Rearrange and simplify:

du

u
=

sinµ

cosµ
dν (7)

Recall the definition of Mach angle:

sinµ =
1

M
(8)

And the trigonometric relationship:
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cos2 µ = 1− sin2 µ (9)

Therefore we have:

du

u
=

√
1/M2

1− 1/M2
dν (10)

du

u
=

1√
M 2 − 1

dν (11)

3.2 Relation Between M and dν

Recall the definition of Mach number:

u = Ma (12)

Therefore we take the derivative:

du = d(Ma) = Mda+ adM (13)

du

u
=

dM

M
+

da

a
(14)

Recall the speed of sound definition under TPG and CPG assumption:

a =
√
γRT (15)

Also take the derivative:

da =
√
γRd

√
T (16)

Plug back in we have:

du

u
=

dM

M
+

d
√
T√
T

=
dM

M
+

1

2

dT

T
(17)

Recall the energy conservation:

To = T (1 +
γ − 1

2
M 2) = const (18)

Same approach for the derivative:

dTo

To
=

dT

T
+

d(1 + γ−1
2 M 2)

(1 + γ−1
2 M 2)

= 0 (19)

Rearrange we can get:
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dT

T
= −

d(1 + γ−1
2 M 2)

(1 + γ−1
2 M 2)

= −M(γ − 1)dM

(1 + γ−1
2 M 2)

= − M 2(γ − 1)

(1 + γ−1
2 M 2)

dM

M
(20)

Now plug back in we have:

du

u
=

dM

M
−

γ−1
2 M 2

(1 + γ−1
2 M 2)

dM

M
=

1

(1 + γ−1
2 M 2)

dM

M
(21)

Recall previously:

du

u
=

1√
M 2 − 1

dν (22)

Now we have:

dν =

√
M 2 − 1

1 + γ−1
2 M 2

dM

M
(23)

If we assume finite angle and do the integration, after some magic math:

ν2 − ν1 = [

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M 2 − 1)− tan−1

√
M 2 − 1]M2

M1
(24)

Notice that here:

δ = ν2 − ν1 (25)

Therefore, if given the turning angle and M1, we can use this equation to get M2.
Notice that there is no analytical solution, we have to either use iterative method or
find ν as a function of M and tabulate or graph solution.

3.2.1 Reference Condition Method

If we want to find ν = ν(M) to get M2, we need to choose (arbitrary) reference
condition. For example, if we choose ν = 0 at M = 1, then the expression becomes:

ν =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M 2 − 1)− tan−1

√
M 2 − 1 (26)

Here ν represents angle through which a sonic flow would have to turn to reach
M.
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Figure 6: Reference Condition Method

3.2.2 Tabular Solution

Procedures:

1. Given M1 and δ

2. Find ν1 for given M1 from table

3. Get ν2 from δ = ν2 − ν1

4. Check ν2 in table to find M2

5. Use isentropic flow relations to find T2, p2, since expansion is isentropic (no
shock).

4 Prandtl Meyer Fan Angle

Figure 7: Fan Angle

The Fan Angle is defined as the angle between the first and last Mach wave.
Using this we can know when expansion has ended in flow field for a given distance
away from wall.

Fan Angle = µ1 − (µ2 − δ) = (µ1 − µ2) + (ν2 − ν1) (27)
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5 Maximum Prandtl Meyer Angle

If we plot ν as a function of M:

Figure 8: High Mach Number Cases

Some observations:

1. As M increases, the flow will reach maximum Prandtl Meyer Angle (when
γ = 1.4, ν ≈ 130.5o)

2. So as M increases, maximum turn angle (δmax) will decrease

Recall the equation:

ν =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M 2 − 1)− tan−1

√
M 2 − 1 (28)

Based on trigonometric function relationships:

M → ∞ : tan−1(∞) = 90o (29)

Therefore we have:

νmax = (

√
γ + 1

γ − 1
− 1)90o (30)

Therefore we can that if γ decreases (which means higher temperature or bigger
molecules), maximum Prandtl Meyer Angle increases.
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6 Reflected Expansion Wave

Figure 9: Reflected Expansion Wave

Considering a PM fan impinging on a flat wall. Then the incident expansion waves
tend to turn flow away the lower wall. But vacuum could not be created, so flow must be
turned back parallel to lower wall. The flow opens up, reflected waves are expansions.

If we want to get M3:

ν3 = δ2 + ν2 = δ2 + (δ1 + ν1) = 2δ + ν1 (31)
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