Jet

1 Free Shear Flow

1.1 Overview

Free shear flows are types of fluid flows far away from solid boundaries in which
the velocity varies across the flow, causing shearing action. This variation in velocity
causes momentum to be transferred from one layer to another, leading to shear stress.

1.2 Types

1. Jets: These occur when fluid is ejected from a nozzle into a still fluid.

2. Wakes: These occur when fluid flows past a bluff body, causing a region of low
pressure and turbulent flow behind the body.

3. Mixing layers: These occur when two parallel streams of fluid at different ve-
locities come into contact.

4. Shear layers: These occur when there is a significant velocity difference across
a relatively thin layer of fluid.

2 Jets

2.1 Assumptions
1. Incompressible, 2D
2. Steady flow

3. Momentum diffuses from a central source, spreads over increasingly wider region
downstream, but momentum is conserved overall.

2.2 Governing Equations

Start from incompressible, 2D, steady flow:
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Figure 1: Jet.
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Because no solid boundaries to impose any pressure gradients, and x momentum is
much larger than y momentum:

(2)

(3)

@ + @ =0 (4)

or 0Oy
u% + v% =V Fu
Ox oy Oydy

LHS:
ou ou ou Ov

Us—+ Vv~ +u

ox Jy [8_56 * dy

~ oz Uay u@y (6)
_, Ou O(uw)

@TSJ: sijjan@umich.edu 2



Viscous Flow - Jet

Put it back:
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Integrate over y:

Boundary Conditions:
1. u(z,00) =0
2. u(z,0) = Up(x)

3. u(xr,—o0) =0

Therefore,
> u?
—dy =0 10
W (10)
a o0
— / uw?dy =0 (11)
oxr J_o
oo
/ u® dy = const (12)
—0o0
Here, we define M as the momentum flux,
0
M=p / u? dy (13)
—00
Now we assume u(z,y) = Up(x)
M
/ UZ(z (x)dn (14)
Based on momentum conservatlon, we get:
U (2)6(z) = const (15)
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O.M. estimates terms in momentum equation
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If convective terms and diffusion terms are in balance
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Relations (1) and (2) will allow us to deduce the forms of Up(z) and

d(z), if we suppose they are power laws in 2. (More later...)

= const (2)

2

Evolution of centerline velocity and thickness

We deduced (1) U3S = const and (2) §2dUy/dx = const.

Also expect that Uy decreases with x, while d increases with z, in
both cases monotonically. If series expansions are used, at sufficiently
large x rates of increase or decrease will be driven by term with largest
positive/negative exponent. Power-law dependences thus reasonable.

Let §(x) oca™; Up(z) ox 2"
Then, (1) = m+2n=20; (2) = 2m+n —1=0. We get

2/3 -1/3

d(x) o x?; Up(x) x x

(Note: this means Re = Uyd/v increases with z: this flow has a
tendency to become turbulent downstream.)

Seeking a similarity solution

Define n = y/d(x) and use stream function (for both u and v)
n=(y/Bla™ ; ¢~ U= Az""f(n)
where A and B are dimensional constants, to be determined later.

As done in other contexts earlier, use chain rule to transform each
term in streamwise momentum equation (recall, dp/dx = 0)
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After some straightforward manipulation, transformed equation is

"+ (ABf3v)(f* + ff") = 0

Subject to the boundary conditions:

(a) u = 0 at y = +oo ie. zero freestream velocity if discharging
into stagnation surroundings. That is, f'(oc) = 0.

(b) Symmetric velocity profile: f'(n) = f(—n) = f"(0) =0

(c) y = 0 being a streamline: v =0at y =0 = f(0) =0

Math leading to solution of the transformed ODE

Although nonlinear, product rule allows integrating once to

I+ (BSOS = €y
Boundary conditions (b) and (c) imply entire LHS is zero at n = 0.
This means €'} must be 0. Then, a second integration gives

'+ (1/2)(AB/3v)(f*) = C

On the centerline, f(0) = 0 while f'(0) = 1 (since u = Uy there).
This requires Cs = 1. Further, since we still have freedom with the
constants A and B, let’s set the coefficient on the LHS to unity, by
stipulating AB/(3v) = 2.

With these steps, we get
fl — 1 _ fQ )

This belongs to a class of ODEs called the Riccati Equation, where
the RHS is a second-order polynomial of the unknown function, with
coefficients that may be fixed or are functions of the independent
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variable alone). (See books on Differential Equations, if interested)
The solution is

f = tanh(y)
For the hyperbolic trigonometric functions: useful facts include

sinh(z) = 3(e" —e™") : cosh(z) = 3(e" +€77)
cosh®(z) — sinh®(z) = 1

tanh(z) = (e" —e ") /(e +e77) .
The streamwise velocity profile is given by
A -1/3 2| Y —2/3
U=—x sech [—:1: / ]
B B
The usual choices of A and B are such that
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Using these results, it can be verified that, due to entrainment and

mass conservation respectively:

o0 oo
/ udy T withzx ; / u® dy = M/p (constant)

oo 00

For reference, in the case of a round jet, Uy oc 2~ while 6 o< .
(Of course will decrease and increase with x respectively, but at a
rate that is geometry-dependent.)

2.3 Jet Entrainment

Jet entrainment in fluid dynamics refers to the process by which a jet of fluid
incorporates surrounding fluid into its flow. As a fluid jet exits a nozzle, it interacts
with the surrounding stagnant fluid (which could be a gas or a liquid), resulting in
the transfer of momentum from the jet to the stagnant fluid. This interaction causes
the surrounding fluid to be "entrained” or drawn into the jet, which causes the jet to
spread and slow down. This principle has many practical applications. For example,
it’s utilized in the design of jet engines, where air from the surrounding atmosphere is

entrained to facilitate combustion.
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Entraivunent refers to- suwrrounding fluid being “sucked” into-the field of avjet. Covsider
the field of o 2 dimensional jet depicted below. Following the flow frow left to- right, we
sees that the velocity profile flatteny due to- viscous diffusiow of w-direction momentuun,
Now, take the centerline. The x- velocity at this locatiow iy decreasing with downstream
distance; thug du/ox < 0. Ow the other hand; take o arbitrowy point withy v lawge y-
coovdinate. Stouting from the left, the velocity is essentiadly zero- and increases due to-
the viscouy travusfer of axiad momentwm. Thew du/dx > 0. In between these two regions,
there muust be av bounding surface where du/dx = 0.

Now, by the incompressible continuity equatiow thisy meany that in the inner regionw
av/ay > 0, while in the outer regiow dv/dy < 0, as showw in the notional plot. The precise
functional form of the v- velocity cannot be determined from these considerations alone
(the momentum equation must be solved to- obtain this information), the shape of the
curve couv be determined by ‘integrating’ the notional plot of dv/dy and noting that
v(0) = 0 and v(») = v(-x) > 0. Thiy iy enough to-demonstrate the sigw of the v- velocity v
each regionw and thus that entrainment iy required. so-as to- maintain continunity.
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