
Parallel Flow

1 Definition

The flow with parallel streamlines.

Figure 1: Parallel Flow.

2 Assumptions

1. v = w = 0

2. Newtonian Fluid

3. Incompressible (Constant Density), no body force

4. 2D (Infinite Wide),
∂

∂z
= 0

5. Steady Flow

3 Governing Equations

3.1 Continuity

Steady flow, constant density:
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Viscous Flow · Parallel Flow

∇ · u = 0 (1)

In 2D:

∂u

∂x
+

∂v

∂y
= 0 (2)

Based on the assumptions, v = 0:

∂u

∂x
= 0 (3)

3.2 Momentum

Ignore the body force and assume constant density:

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(4)

In x direction:

ρ(
∂u

∂t
+ (u · ∇)u) = −∂p

∂x
+ µ[

∂2u

∂x∂x
+

∂2u

∂y∂y
] (5)

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = −∂p

∂x
+ µ[

∂2u

∂x∂x
+

∂2u

∂y∂y
] (6)

Because of continuity (
∂u

∂x
= 0), steady flow, and v = 0:

0 = −∂p

∂x
+ µ

∂2u

∂y∂y
(7)

In y direction:

ρ(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) = −∂p

∂y
+ µ[

∂2v

∂x∂x
+

∂2v

∂y∂y
] (8)

−∂p

∂y
= 0 (9)

Therefore, we know that P = P(x) Only!

∂p

∂x
= µ

∂2u

∂y∂y
(10)

u =
1

2µ

dp

dx
y2 + Ay +B (11)
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4 Couette Flow

4.1 Assumptions

Figure 2: Couette Flow.

1. Parallel Flow Assumptions

2. No Pressure Gradient

3. One wall is moving at U∞, the other wall is stationary

4.2 Boundary Conditions

1.
dp

dx
= 0

2. u = U∞ at y = h

3. u = 0 at y = 0

4.3 Governing Equations

u =
1

2µ

dp

dx
y2 + Ay +B (12)

At y = 0:

B = 0 (13)

At y = h:

Ah+B = U∞ (14)
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Viscous Flow · Parallel Flow

A =
U∞

h
(15)

Therefore:

u =
U∞

h
y (16)

5 Poiseuille Flow

5.1 Assumptions

Figure 3: Poiseuille Flow.

1. Parallel Flow Assumptions

2. Non-zero Pressure Gradient

3. Both Walls Fixed

5.2 Boundary Condition

1. u = 0 at y = 0

2. u = 0 at y = h

5.3 Governing Equations

u =
1

2µ

dp

dx
y2 + Ay +B (17)

At y = 0:
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B = 0 (18)

At y = h:

0 =
1

2µ

dp

dx
h2 + Ah+B (19)

Therefore:

A = − 1

2µ

dp

dx
h (20)

And:

u =
1

2µ

dp

dx
y(y − h) (21)

6 Superposition

6.1 Assumption

Couette Flow + Poiseuille Flow

6.2 Governing Equations

u =
U∞

h
y +

1

2µ

dp

dx
y(y − h) (22)

Non-dimensional form:

u

U
=

y

h
− h2

2µU

dp

dx

y

h
(1− y

h
) (23)

Define a non-dimensional parameter:

Λ =
h2

2µU

dp

dx
(24)

Λ represents the pressure gradient. If Λ < 0, it is favourable pressure gradient.
If Λ > 0, it is adverse pressure gradient, which may push fluid near the wall

backwards and cause the flow separation (
∂u

∂y
< 0 at y = 0)

7 Unsteady Parallel Flow

7.1 Assumptions

1. Parallel Flow Assumptions
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Viscous Flow · Parallel Flow

Figure 4: Unsteady Parallel Flow.

2. Fluid in unbounded space above a flat surface, initially at rest but suddenly
moving at speed U0

3. No Pressure Gradient

7.2 Initial and Boundary Condition

1. Initial Condition: at t = 0, u = 0 for all y > 0

2. Boundary Condition: at t > 0, u = U0 at y = 0; u = 0 at y → ∞

7.3 Governing Equations

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = −∂p

∂x
+ µ[

∂2u

∂x∂x
+

∂2u

∂y∂y
] (25)

Because of continuity (
∂u

∂x
= 0), no pressure gradient, and v = 0:

∂u

∂t
= ν

∂2u

∂y2
(26)

7.3.1 ODE and PDE

Unlike the Ordinary Differential Equation (ODE) in the steady flow prob-
lem, here we cannot avoid a Partial Differential Equation (PDE). The differences
between ODE and PDE are:

1. ODEs: These equations involve functions of only one independent variable and

its derivatives. For example, the first-order ODE
dy

dx
= f(x, y) involves one inde-

pendent variable x and its derivative
dy

dx
. ODEs can be further classified as linear

or nonlinear, homogeneous or nonhomogeneous, and so on, based on their specific
features.
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2. PDEs: These equations involve functions of more than one independent variable
and their partial derivatives. For example, the two-dimensional heat equation:

∂u

∂t
= α(

∂2u

∂x2
+

∂2u

∂y2
) (27)

involves two independent variables x and y, and their partial derivatives. PDEs
describe a wide range of physical and mathematical phenomena, including waves,
diffusion, quantum mechanics, and fluid dynamics.

7.3.2 Similarity Transformation

One of the best way to solve PDE is similarity transformation, so that we can change
the PDE to ODE with a similarity variable as the single independent variable. But how
to find this variable? Normally it has to be connected with the physics.

Thinking intuitively, viscosity quantifies the momentum diffusion from moving sur-
face into fluid body. For a more viscous fluid, motion will start earlier. Or
at a given time, effect reaches greater distance, ∝

√
νt. This could be obtained from

dimensional analysis:

√
νt = [

√
m2 · s−1 · s] = [m] (28)

Therefore, we choose the similarity parameter as:

η =
y√
νt

(29)

which is a non-dimensional measure of ”how far from the wall”. Then this question
becomes an ODE with η as a single independent variable. Derivatives in y and t can
be transformed to derivatives in η via Chain Rule:

∂()

∂y
=

∂()

∂η

∂η

∂y
(30)

∂()

∂t
=

∂()

∂η

∂η

∂t
(31)

7.3.3 Final Solution

First, we choose the similarity variable as η =
y

2
√
νt

. Then, using the chain rule we

get:

∂η

∂y
=

1

2
√
νt

;
∂η

∂t
= − η

2t
(32)

Then, we transfer the equation:

∂u

∂t
= ν

∂2u

∂y2
(33)
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into:

− η

2t

∂u

∂η
=

ν

4νt

∂2u

∂η2
(34)

Rearrange:

∂2u

∂η2
+ 2η

du

dη
= 0 (35)

Rewrite the boundary conditions as:

1. At η = 0, u = U0

2. At η → ∞, u = 0

Assume f =
du

dη
, then:

df

dη
+ 2ηf = 0 (36)

df

f
= −2ηdη (37)

f = C1e
−η2 (38)

Integrate again, we can get:

u = C1

η∫
0

e−η2 dη + C2 (39)

From the first boundary condition, we can get C2 = U0. Now, we introduce the
error function, which is defined as:

erf(x) =
2√
π

x∫
0

e−s2 ds (40)

With the properties of (easily proved):

erf(0) = 0, erf(∞) = 1, erf(−η) = −erf(η) (41)

Therefore, from the second boundary condition:

0 = C1 ·
√
π

2
+ U0 (42)

C1 = −U0
2√
π

(43)
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Therefore,

u = U0(1−
2√
π

x∫
0

e−s2 ds) (44)

u = U0(1− erf(η)) = U0erfc(η) (45)
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