
Hydrodynamic Stability

1 Overview

1.1 Definition

Hydrodynamic stability in fluid mechanics refers to the study of fluid flows that
are in equilibrium, and what happens when they are subject to disturbances. This is
important because even a small disturbance can lead to significant changes in the flow,
such as transition from laminar to turbulent flow, or the onset of wave phenomena.

1.2 Types of Stability

Main idea is to introduce some types of disturbances into a steady laminar flow and
see how the disturbance behave:

1. Unstable: if it grows or amplifies

2. Stable: if it decays or is attenuated

3. Neutrally Stable: if it remains at constant amplitude

2 Linear, Small Disturbance Theory

First we assume a simple base flow, such as a parallel pure shear flow:

U = U(y), V = W = 0, P = P (x, y) (1)

A flow is unstable if it is unstable to ”any” form of disturbance. It is proven that
2D disturbances are more de-stablizing than 3D disturbances, so it is appropriate to
restrict analysis to 2D disturbances.

Introduce a 2D disturbance in the form of:

u′ = u′(x, y, t), v′ = v′(x, y, t), p′ = p′(x, y, t) (2)

So the resultant flow is given by:

u = U + u′, v = v′, w = 0, p = P + p′ (3)

Recall the X momentum equation:
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∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −1

ρ

∂P

∂x
+ ν(∇2U) (4)

Add disturbance:

∂(U + u′)

∂t
+(U+u′)

∂(U + u′)

∂x
+(V +v′)

∂(U + u′)

∂y
= −1

ρ

∂(P + p′)

∂x
+ν(∇2(U+u′)) (5)

Rules for simplification:

1. Inside ∂/∂x and Inside ∂/∂y, U + u′ could not be approximated to U

2. Outside, U + u′ could be approximated to U

3. v′∂u′/∂y is too small, could be ignored

Therefore, we get:

∂u′

∂t
+ U

∂u′

∂x
+ v′

∂U

∂y
= −1

ρ

∂P

∂x
− 1

ρ

∂p′

∂x
+ ν(∇2(U + u′)) (6)

From base flow, assume steady flow:

∂U

∂x
+
∂V

∂y
= 0 (7)

Because V = 0, ∂U/∂x = 0. Therefore,

0 = −1

ρ

∂P

∂x
+ ν(∇2U) (8)

So we have:

∂u′

∂t
+ U

∂u′

∂x
+ v′

∂U

∂y
+

1

ρ

∂p′

∂x
= ν(∇2u′) (9)

Recall Y momentum equation:

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= −1

ρ

∂P

∂y
+ ν(∇2V ) (10)

Add the disturbance:

∂(V + v′)

∂t
+(U+u′)

∂(V + v′)

∂x
+(V +v′)

∂(V + v′)

∂y
= −1

ρ

∂(P + p′)

∂y
+ν(∇2(V +v′)) (11)

Similar with X momentum, simplify (again, v′∂v′/∂y is too small, could be ignored):

∂v′

∂t
+ U

∂v′

∂x
= −1

ρ

∂(P + p′)

∂y
+ ν(∇2v′) (12)
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From base flow,

0 = −1

ρ

∂P

∂y
(13)

Therefore:

∂v′

∂t
+ U

∂v′

∂x
+

1

ρ

∂p′

∂y
= ν(∇2v′) (14)

3 Orr-Sommerfeld Equations

3.1 Periodic 2D disturbances

2D disturbance itself satisfies continuity, so:

∂u′

∂x
+
∂v′

∂y
= 0 (15)

We can also use a periodic stream function to express the disturbance:

ψ(x, y, t) = ϕ(y)exp[i(αx− βt)] (16)

Here:

1. i =
√
−1 allows us to consider disturbances that may potentially oscillate or

propagate in addition to being amplified or attenuated.

2. α is real, means periodic in x, with wavelength λ = 2π/α

If we assume that a general 2D disturbance can be decomposed into a sum of ele-
mentary disturbances each with a different wavelength; response of flow to disturbance
can depend on the wavelength:

β = βr + iβi (17)

ψ(x, y, t) = ϕ(y)exp[i(αx− βrt)]exp(βit) (18)

The sign of βi controls the amplitude of the disturbance, unstable if βi > 0

3.2 Derivation

From the disturbance stream function above:

u′ =
∂ψ

∂y
= ϕ′(y)exp[i(αx− βt)] (19)

v′ = −∂ψ
∂x

= −iαϕ(y)exp[i(αx− βt)] (20)
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Plug in back to the simplified disturbance equations, eliminate the pressure gradient
terms by taking the curl, we can get the OS Equation:

(U − c)(ϕ′′ − α2ϕ)− U ′′ϕ = − i

αRe
(ϕ′′′′ − 2α2ϕ′′ + α4ϕ) (21)

Here:

1. Re = Umδ
ν

2. c is complex valued, c = β
α
= cR + icI

3. 1/α is a wavelength, while β has the dimension of frequency, cR/α can be inter-
preted as the propagating speed of the disturbance

4. Amplification versus attenuation depends on whether cI > 0 or < 0. cI = 0 gives
condition of neutral stability

5. Boundary conditions: disturbance must satisfy no-slip and impermeability at the
walls, and also vanish in the freestream. u′ = 0 = v′ → ϕ = 0 = ϕ′ at both
y = 0, y → ∞

3.3 Inviscid Instability

In the limit of ν → 0 or Re→ ∞, we can get the Rayleigh Equation:

(U − c)(ϕ′′ − α2ϕ)− U ′′ϕ = 0 (22)

Necessary conditions for instability:

1. Flow should have a point of inflexion (U ′(y) ̸= 0 but U ′′(y) = 0)

2. If a PI exists, it is further necessary that U ′′(y)(U − UPI) < 0 somewhere in the
velocity profile

3.4 Neutral Stability Curves

Apply O-S equation for a boundary layer, the locus of cI = 0 in the αδ − Re plane
gives the neutral stability curves.

Observations:

1. Below certain Reδ, disturbances of all wavelengths are attenuated. Above this
number, some disturbances may grow.

2. Typically, Recrit is lower for velocity profiles with a point of inflexion, because
such flows may undergo inviscid instability

3. Critical Re for instability is much lower than critical Re for transition to turbu-
lence, because the disturbances need to grow in amplitude before they become
large enough for turbulence to develop

4. Viscosity may have some stabilizing effect for the flow (larger stable region)
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Figure 1: Point of Inflexion.

Figure 2: Neutral Stability Curves.
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