Wake and Mixing Layer

1 Wake

1.1 Overview

In fluid dynamics, a "wake" refers to the region of disturbed flow (often turbulent) downstream of a solid body moving through a fluid (liquid or gas). The wake is caused by the body obstructing the fluid flow. This obstruction creates a trail of turbulence, decreased pressure, and fluid velocity variation.



Figure 1: Wake.

1.2 Boundary Conditions

1. At y = 0, u(x, y) is minimum

2. At
$$y = 0$$
, $\frac{\partial u}{\partial y} = 0$, $v = 0$ by symmetric

3. At
$$y = \pm \infty, u = U_{\infty} = const$$

1.3 Governing Equations

Start from general free shear flow equations:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y \partial y}$$
(2)

Define $u_1(x, y)$ as the velocity deficit, then:

$$u_1(x,y) = U_{\infty} - u(x,y) \tag{3}$$

$$(U_{\infty} - u_1)\frac{\partial u_1}{\partial x} + v\frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y \partial y}$$
(4)

Let U_S denote max velocity deficit (at centerline): this is also a measure of change of velocity inside the flow.

At some long distance (ℓ) downstream: may expect $U_{\infty} - u_1 \approx U_{\infty}$. Estimate O.M of terms in equation above: respectively

$$\frac{U_{\infty}U_S}{\ell} \ , \ \frac{U_S\delta}{\ell} \ \frac{U_S}{\delta} \ , \ \nu \frac{U_S}{\delta^2}$$

where U_S decreases with x, while δ increases with x. But since $U_{\infty} \gg U_S$, the first convective term is much larger than the second. Hence equation simplifies to

$$U_{\infty}\frac{\partial u_1}{\partial x} = \nu \frac{\partial^2 u_1}{\partial y^2}$$

Looks like equation for "Stokes first problem" before, if we define $t = x/U_{\infty}$. But BC's different, so solution is different.

Similarity Solution

Assume a similarity solution for velocity defect, of the form

$$\frac{u_1(x,y)}{U_S(x)} =$$
fn. of $\frac{y}{\delta(x)}$

Here δ is a diffusive length scale. By dimensional arguments

$$\delta(x) = 2\sqrt{\nu t} = 2\sqrt{\nu x/U_{\infty}}$$

(factor of 2 being for mathematical convenience later)

Momentum conservation

The momentum deficit in the wake per unit span is

$$F = \rho \int_{-\infty}^{\infty} u(U_{\infty} - u) \, dy \approx \rho U_{\infty} \int_{-\infty}^{\infty} u_1 \, dy$$

"No external forces" implies F is independent of x. Hence

$$U_S(x)\delta(x)\propto x^0$$

i.e. $U_s(x)/U_\infty=Bx^{-1/2}$

where B (of dimensions $[L]^{1/2}$) is to be determined.

Form of the velocity profile

$$u_1 = \frac{BU_{\infty}}{\sqrt{x}}g(\eta)$$
 ; where $\eta = \frac{y}{2\sqrt{\nu x/U_{\infty}}}$

Use chain rule to transform the velocity deficit equation:

$$g'' + 2(\eta g' + g) = 0$$

$$\Rightarrow g'' + (2\eta g)' = 0$$

Integrating, using BC at $\eta = 0$

$$g' = -2\eta g \Rightarrow g = \exp(-\eta^2)$$

i.e. $u_1 = \frac{BU_{\infty}}{\sqrt{x}} \exp\left(\frac{-y^2}{4\nu x/U_{\infty}}\right)$

Use integral constraint to determine B:

In our far-field approximation,

$$F = \rho U_{\infty} \int_{-\infty}^{\infty} u_1 \, dy$$

= $\rho \frac{BU_{\infty}^2}{\sqrt{x}} \int_{-\infty}^{\infty} \exp\left(\frac{-y^2}{4\nu x/U_{\infty}}\right) \, dy$
= $\rho \frac{BU_{\infty}^2}{\sqrt{x}} \int_{-\infty}^{\infty} \exp(-\eta^2) \, d\eta \left(2\sqrt{\frac{\nu x}{U_{\infty}}}\right)$
= $2\rho B U_{\infty}^2 \sqrt{\frac{\nu}{U_{\infty}} \frac{\sqrt{\pi}}{2}} \left[\operatorname{erf}(\infty) - \operatorname{erf}(-\infty)\right]$
= $2\rho U_{\infty}^2 B \sqrt{\frac{\pi\nu}{U_{\infty}}}$

Here F is the drag force per unit span. For a body of length L the drag coefficient (C_d , in 2D flow) is defined such that

$$F = C_d \ \frac{1}{2}\rho U_\infty^2 L$$

Equating these two formulas for F gives

$$2B\sqrt{\pi\nu/U_{\infty}} = C_d \ \frac{1}{2}L$$

We can write B in terms of the drag coefficient and Reynolds number

$$\frac{B}{\sqrt{L}} = \frac{C_d}{4\sqrt{\pi}} R e_L^{1/2}$$

With B expressed in terms of L, C_d and Re_L per the last equation on the last page, we can substitute in the expression $u_1 = \dots$. It is best to re-arrange in a non-dimensional form:

$$\frac{u_1}{U_{\infty}} = \frac{C_d}{4\sqrt{\pi}} R e_L^{1/2} \left(\frac{x}{L}\right)^{-1/2} \exp\left(\frac{-y^2}{4\nu x/U_{\infty}}\right)$$

We recover U_S at y = 0. We have 3 basic dimensions (M,L,T) and 8 variables: $u_1, U_{\infty}, x, y, L, \nu, F, \rho$. The Buckingham- π theorem says to have 8-3=5 non-dimensional groups:

$$u_1/U_{\infty}, C_d, Re_L, x/L, \eta$$

The velocity (defect) profile is "bell-shaped" (sometimes called Gaussian). This formula has a singularity at x = 0: not a concern though, since have assumed "far downstream".

Additional Physical Comments

- **1.** Higher viscosity implies lower Re_L overall: less velocity defect since viscous diffusion is more complete.
- **2.** Half width: value of y where u_1/U_S is 0.5. i.e. $\exp(\ldots) = 0.5$.
- **3.** Reynolds number $U_S(x)\delta(x)/\nu = const.$ No tendency for transition to turbulence downstream.

Wake behind immersed flat plate

If Blasius solution applies:

$$C_d = 2(1.328) Re_L^{-1/2}$$

(Factor of 2 applied since plate is wetted on both sides.)

2 Mixing Layer

2.1 Overview

In fluid dynamics, the mixing layer is a type of shear flow which occurs when two parallel streams of fluid flow at different velocities. The difference in velocities at the two layers generates a shear stress and, through viscous effects, triggers instabilities that cause the two layers to mix together. This process is important in a variety of physical phenomena, from meteorological patterns in the atmosphere to flow in rivers and oceans, to the spread of pollutants, and in industrial applications.

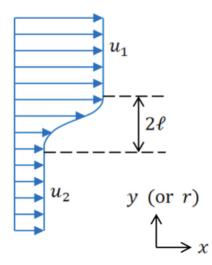


Figure 2: Mixing Layers.

2.2 Boundary Conditions

1.
$$y \to +\infty : u \to u_1, v \to 0$$

2.
$$y \to +\infty : u \to u_2, v \to 0$$

3.

$$y = 0: \begin{cases} u(0^+) = u(0^-) \\ v(0^+) = v(0^-) \\ \mu \frac{\partial u}{\partial y}|_{0^+} = \mu \frac{\partial u}{\partial y}|_{0^-} \end{cases}$$