
Detonation and Deflagration

1 1D Combustion Wave

Figure 1: 1D Combustion Wave.

To simplify the problem, we usually assume the combustion wave as 1D, which means
reactants on one side of ”combustion/reaction zone”, and products on the other. During
the combustion, reaction zone moves through reactants. We define wave propagation
as how fast does this zone travel.

2 Detonation and Deflagration

2.1 Overview

We identify 2 combustion wave regimes:

1. Deflagrations: subsonic waves (flag - slow)

2. Detonations: supersonic waves

In lab view, the combustion wave is shown below:

Figure 2: Lab View.
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The difference between deflagrations and detonations could be shown in the table
below:

Figure 3: Difference between deflagration and detonation.

From the data, we can conclude that deflagration is a expansion wave (flag - expand),
with the increase in temperature and the decrease in density and pressure. Detonation
is a compression wave, with the increase in pressure, temperature and density.

2.2 Problem Setup

Now, we want to analyze this problem in a quantitative way. First we set up the
problem in wave-fixed reference frame:

Figure 4: Wave View.

Assumptions:

1. Steady flow

2. Adiabatic

3. No work but flow work

4. Ideal gases

5. Neglect viscous effects

Now the problem is transferred to:
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1. Given initial TD state (p1, T1, ρ1, Yi1)

2. Find final TD state (p2, T2, ρ2, Yi2) and (u1, u2)

2.3 Governing Equations

Continuity:
ρ1u1 = ρ2u2 = ṁ′′ (1)

Where ṁ′′ has the unit as kg/(m2 · s)
Momentum:

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (2)

Energy: Recall the first TD law:

Q̇ =
d

dt

∫
CV

ρe0 dV +

∫
CS

ρh0(u · n̂) dA (3)

Plug in the continuity equation:

ṁ2
′′h02 − ṁ1

′′h01 = 0 (4)

We know the mass flow rate is a constant, therefore:

h1 +
u21
2

= h2 +
u22
2

(5)

We know the enthalpy has two parts:

h = hsens + hchem (6)

Based on the definition of heat release:

q = h1,chem − h2,chem =
∑

(Yi,1 − Yi,2)∆h0
f,i,Tref

(7)

h1,sens +
u21
2

+ q = h2,sens +
u22
2

(8)

Ideal Gas Law:

p = ρ
R̄

W̄
T (9)

Caloric Perfect Gas Law:

hi =

∫ T

Tref

cpi(T
′) dT ′ (10)

Now we have 5 equations but 6 unknowns (p2, ρ2, h2, T2, u1, u2), we need to find
other limitations to solve the equations.
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2.4 Rayleigh Line

Combine continuity and momentum equations, we have:

p+ ρu2 = p+
ṁ′′2

ρ
= const (11)

Since we know the mass flux is a constant, rearrange the equation we get:

dp

d(1/ρ)
= −ṁ′′2 = const (12)

Therefore, we can get the Rayleigh Line:

−ṁ′′2 = −(ρ1u1)
2 = −(ρ2u2)

2 =
p2 − p1

1/ρ2 − 1/ρ1
(13)

Figure 5: Rayleigh Line.

Notice that the mass flux must be positive, so p and ρ must change in same
direction.

Using this relation, we can find the wave speed in terms of p and 1/ρ:

−(u1ρ1)
2 =

p2 − p1
1/ρ2 − 1/ρ1

(14)

u1 =
1

ρ1

√
p2 − p1

1/ρ1 − 1/ρ2
(15)

Also the product speed:

u2 =
1

ρ2

√
p2 − p1

1/ρ1 − 1/ρ2
(16)
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It is also very important to compare the wave speed and the product speed. From
the continuity equation, we have:

u1 − u2
u1

= 1− ρ1
ρ2

(17)

Then:

1. Compression: ρ2 > ρ1, so u1 − u2 > 0, products move with wave

2. Expansion: ρ1 > ρ2 so u1 − u2 < 0, products move away from wave

Sometimes, it is better to express the velocity using Mach number:

u = Ma = M

√
γp

ρ
(18)

(u1ρ1)
2 = M 2

1γ1p1ρ1 (19)

Therefore:

γ1M
2
1 =

(u1ρ1)
2

p1ρ1
=

p1−p2
1/ρ2−1/ρ1

p1ρ1
=

1− p2/p1
ρ1/ρ2 − 1

(20)

Similarly:

(u2ρ2)
2 = M 2

2γ2p2ρ2 (21)

γ2M
2
2 =

(u2ρ2)
2

p2ρ2
=

p1−p2
1/ρ2−1/ρ1

p2ρ2
=

p1/p2 − 1

1− ρ2/ρ1
(22)

2.5 Rankine-Hugoniot Relation

In Rayleigh line, we only consider mass and momentum conservation. Now we add
energy into the consideration, which is called Rankine-Hugoniot Relation.

Recall the energy equation:

h1,sens +
u21
2

+ q = h2,sens +
u22
2

(23)

or:

h2 − h1 =
1

2
(u21 − u22) (24)

Recall the Rayleigh Line relation:

u21 =
1

ρ21

p2 − p1
1/ρ1 − 1/ρ2

(25)

u22 =
1

ρ22

p2 − p1
1/ρ1 − 1/ρ2

(26)
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u2
1 − u2

2 = (
1

ρ21
− 1

ρ22
)

p2 − p1
1/ρ1 − 1/ρ2

= (
1

ρ1
+

1

ρ2
)(

1

ρ1
− 1

ρ2
)

p2 − p1
1/ρ1 − 1/ρ2

= (
1

ρ1
+

1

ρ2
)(p2 − p1)

(27)

Therefore:

h2 − h1 =
1

2
(p2 − p1)(

1

ρ1
+

1

ρ2
) (28)

Recall the definition of sensible enthalpy:

h2,sens − h1,sens = cp(T2 − T1) = cp(
p2
Rρ2

− p1
Rρ1

) (29)

Here R is the specific gas constant.

R = R̄/W̄ (30)

Where R̄ is the universal gas constant and W̄ is the molar mass. Also:

cp
R

=
cp

cp − cv
=

γ

γ − 1
(31)

Therefore:

h2,sens − h1,sens =
γ

γ − 1
(
p2
ρ2

− p1
ρ1
) (32)

Assembling:

q = (h2,sens − h1,sens)− (h2 − h1)

=
γ

γ − 1
(
p2
ρ2

− p1
ρ1

)− 1

2
(p2 − p1)(

1

ρ1
+

1

ρ2
)

(33)

From this equation, we can get a family of curves given initial conditions and heat
release q. All of them are rectangular hyperbole, they are called Rankie-Hugoniot
curves:
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Figure 6: Hugoniot Curves.

Notice that if there is no heat release, we call this is shock Hugoniot. The final
state will be the intersection between Rayleigh line and Hugoniot curve.

To prove q > 0 curve is above q = 0 curve, we assume ρ1 = ρ2, then:

q =
γ

γ − 1
(p2 − p1)

1

ρ
− (p2 − p1) =

1

ρ(γ − 1)
(p2 − p1) (34)

To achieve q > 0, we need p2 > p1, so the curve is above q = 0 curve.
We can also prove that deflagration is subsonic and detonation is supersonic using

Hugoniot curve:

Figure 7: Subsonic, Supersonic Proof.

First, we define detonations as compressions, deflagrations as expansions.
Recall the wave speed expression:
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γ1M
2
1 =

1− p2/p1
ρ1/ρ2 − 1

(35)

From the graph, in the expansion region:

ρ1/ρ2 >> 1, p2/p1 < 1 → M1 < 1 (36)

In the compression region:

ρ1/ρ2 < 1, p2/p1 >> 1 → M1 > 1 (37)

Therefore, deflagrations are subsonic and detonations are supersonic.

3 Allowed Solutions

3.1 Chapman-Jouget Point

We define the points where Rayleigh and Hugoniot are tangent as Chapman-
Jouget Points. Why this point is special?

Recall the Hugoniot equation:

(h2 − h1) =
1

2
(p2 − p1)(

1

ρ1
+

1

ρ2
) (38)

Derivative form:

dh2 =
1

2
[(p2 − p1)d(

1

ρ2
) + (

1

ρ1
+

1

ρ2
)dp2] (39)

Recall the Gibb’s Equation:

dh = Tds+
1

ρ
dp (40)

Therefore:

T2ds2 = dh2 −
1

ρ2
dp2

=
1

2
[(p2 − p1)d(

1

ρ2
) + (

1

ρ1
+

1

ρ2
)dp2]−

1

ρ2
dp2

=
1

2
[(p2 − p1)d(

1

ρ2
)− (

1

ρ2
− 1

ρ1
)dp2]

(41)

In this problem, we assume ds2 = 0, so:

(p2 − p1)d(
1

ρ2
) = (

1

ρ2
− 1

ρ1
)dp2 (42)

dp2
d(1/ρ2)

=
p2 − p1

1/ρ2 − 1/ρ1
= −(ρ2u2)

2 (43)
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Based on the definition of speed of sound:

a2 =
∂p

∂ρ
|s (44)

Rearrange:

∂p2
∂(1/ρ2)

|s = −(ρ2a2)
2 (45)

Therefore, we know at C-J points, u2 = a2, M2 = 1, which means the product gases
move at local sonic speed in wave-fixed ref.frame.

Figure 8: C-J Points.

Using C-J points, we can divide the graph into 4 different regions: strong, weak
detonations and strong, weak deflagrations. Here:

1. U: upper C-J points, also the minimum detonation wave speed

2. L: lower C-J points, also the maximum deflagration wave speed
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3.2 Deflagration

Figure 9: Deflagration.

We already know maximum mass flux at L point, therefore:

ṁ′′ = ρ2u2 ≤ (ρ2u2)L (46)

3.2.1 Strong Deflagration

M2,IV

M2,L

=
u2,IV /a2,IV
u2,L/a2,L

∝ ˙m2,IV
′′/ρ2,IV

˙m2,L
′′/ρ2,L

√
p2,L/ρ2,L
p2,IV /ρ2,IV

=
˙m2,IV

′′

˙m2,L
′′︸ ︷︷ ︸

<1

√
p2,L
p2,IV︸ ︷︷ ︸
>1

√
ρ2,L
ρ2,IV︸ ︷︷ ︸
>>1

(47)

Therefore, M2,IV > 1 (strong: subsonic to supersonic). This requires accelera-
tion of subsonic to supersonic flow in constant area via heat addition, which violates
2nd TD law. Therefore, strong deflagration is not allowed.

Figure 10: RayleighFlow.
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3.2.2 Weak Deflagration

M2,III

M2,L
∝ ˙m2,III

′′

˙m2,L
′′︸ ︷︷ ︸

<1

√
p2,L
p2,III︸ ︷︷ ︸
<1

√
ρ2,L
ρ2,III︸ ︷︷ ︸
<<1

(48)

Therefore M2,III < 1. In weak deflagration, the flow is accelerated from subsonic to
subsonic, and the heat release increase u2,M2 from u1,M1. This does not violate 2nd
TD law, so the whole range of weak deflagration is allowed.

3.3 Detonation

Figure 11: Detonation.

We already know U is the minimum detonation speed (M1), we can prove that
detonation is supersonic wave using another method. Based on continuity:

ρ1u1 = ρ2u2 (49)

So:

M1 =
u1
a1

=
ρ2
ρ1

u2
a1

(50)

At upper C-J point:

M1U =
ρ2
ρ1

a2
a1

=
ρ2
ρ1

√
T2

T1
(51)

We know detonation is compression wave, so ρ2 > ρ1 and T2 > T1, so M1 > 1 for
all detonations.
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3.3.1 Strong Detonation

We know the U point has the minimum mass flux, so:

ṁ′′ = ρ2u2 > (ρ2u2)U (52)

Therefore in strong detonation region:

M2,I

M2,U
∝ ˙m2,I

′′

˙m2,U
′′︸ ︷︷ ︸

>1

√
p2,U
p2,I︸ ︷︷ ︸

<<1

√
ρ2,U
ρ2,I︸ ︷︷ ︸
>1

(53)

Therefore, M2,I < 1, the products are subsonic (strong: supersonic to subsonic).
This does not violate the TD laws, but not observed as steady, self-sustained
process.

Figure 12: Strong Detonation.

From the graph, we can observe that there is an expansion wave behind the det-
onation wave, with increasing temperature and reducing pressure (detonation back
pressure), so it will slow M1 until M1 = 1, also speed up M2 until M2 = 1. Therefore,
the solution will eventually relax to C-J point detonation.

3.3.2 Weak Detonation

M2,II

M2,U
∝ ˙m2,II

′′

˙m2,U
′′︸ ︷︷ ︸

>1

√
p2,U
p2,II︸ ︷︷ ︸
>1

√
ρ2,U
ρ2,II︸ ︷︷ ︸
>1

(54)

Therefore M2,II > 1, products stay supersonic. To examine whether this solution,
we need to introduce Zeldovich, von Neumann, Doring (ZND) Model.
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Figure 13: ZND Model

Here is the detonation structure:

1. Detonation is leading shock followed by reaction zone

2. Shock raises p and T

3. M goes subsonic

4. Autoignition after delay

5. Heat release, temperature increases, pressure decreases like deflagration

After leading shock wave, flow is reduced to subsonic. To achieve weak detonation,
flow must reaccelerate to supersonic. If induction/reaction zones only have heat release,
this will violate 2nd TD law.

3.3.3 Summary

No weak (unallowed), strong (unstable) detonation, only leaves C-J so-
lution, which is a planar detonation solution. A planar detonation is a type
of explosion where the detonation wave (the shock wave causing the actual explosion)
propagates in a planar (flat, two-dimensional) manner. This is in contrast to spherical
or cylindrical detonations where the detonation wave propagates outward in a spherical
or cylindrical fashion.
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