NOx Mechanism

1 Zeldovich Mechanism

1.1 Overview

Zeldovich mechanism is also called thermal NO mechanism. It describes the formation of nitrogen oxides (NOx) in combustion processes, particularly those that occur at high temperatures. The reactions include:

 $N_2 + O \rightleftharpoons NO + N$ $\Delta H_R = +75.1 \ kcal/mol$ (1)

$$O_2 + N \rightleftharpoons NO + O \qquad \Delta H_R = -32.1 \ kcal/mol$$
 (2)

$$OH + N \rightleftharpoons NO + H \qquad \Delta H_R = -48.7 \ kcal/mol$$
 (3)

1.2 Steady State Assumption

It is important to know any of these reactions much slower or faster than others, therefore we need to know the characteristic time of the reaction. Take a bimolecular reaction as an example:

$$O_2 + N \xrightarrow{k_{2f}} NO + O$$
 (4)

Then, we define characteristic time by reaction rate and change in reactant concentration:

$$\tau_{chem} = \frac{[N] - [N]_0}{d[N]/dt}$$
(5)

$$\frac{d[N]}{dt} = -k_{2f}[O_2][N]$$
(6)

Assume fractional $[O_2]$ change much less than for [N] and little [N] initially:

$$\tau_{chem} = \frac{[N] - 0}{k_{2f}[O_2]_0[N]} = \frac{1}{k_{2f}[O_2]_0} \tag{7}$$

We can observe that characteristic time depends on rate constant and initial species concentration.

Now we continue to analyze the net production rate:

$$\frac{d[NO]}{dt} = k_{1f}[N_2][O] - k_{1r}[NO][N] + k_{2f}[O][N] - k_{2r}[NO][O]$$
(8)

$$\frac{d[N]}{dt} = k_{1f}[N_2][O] - k_{1r}[NO][N] - k_{2f}[O][N] + k_{2r}[NO][O]$$
(9)

Now we introduce the **steady state assumption** to solve the ODEs. This assumption only applies to specific species not reactions. It usually associates with condition where species concentration determined by instantaneous balance between formation and destruction rates.

Assume [N] in steady state because [N] is destroyed almost immediately as it is created. Therefore:

$$0 = k_{1f}[N_2][O] - k_{1r}[NO][N] - k_{2f}[O][N] + k_{2r}[NO][O]$$
(10)

$$k_{1f}[N_2][O] - k_{1r}[NO][N] = k_{2f}[O][N] - k_{2r}[NO][O]$$
(11)

$$[N]_{ss} = \frac{k_{1f}[N_2][O] + k_{2r}[NO][O]}{k_{1r}[NO] + k_{2f}[O_2]}$$
(12)

Simplified NO Rate

• Use assumptions/definitions in NO rate equation

$$\frac{d[NO]}{dt} = \underbrace{k_{1f}[N_{2}][O] - k_{1r}[NO][N]}_{N} + \underbrace{k_{2f}[O_{2}][N] - k_{2r}[NO][O]}_{N}_{2r} + \underbrace{k_{2f}[NO][O]}_{N}_{2r} + \underbrace{k_{2f}[O]}_{N}_{2r} +$$

Simplified NO Rate (con't)

$\frac{d[NO]}{dt} = 2RR_1 \left(1 - \frac{1 + RR_2 / RR_1}{1 + k_{2f} [O_2] / k_{1r} [NO]} \right)$
$= 2RR_{1} \left(1 - \frac{1 + RR_{2}/RR_{1}}{1 + \{[NO]^{*}/[NO]\}^{2} \{k_{2r}[NO]/k_{1f}[N_{2}]\}} \right)$
$= 2RR_{1} \left(1 - \frac{1 + RR_{2}/RR_{1}}{1 + \{[NO]^{*}/[NO]\}^{2}\{RR_{2}/RR_{1}\}} \right)$
а, са акала са акала са акала се акала

 $\alpha \equiv [NO]/[NO]^* RR'_2 \equiv k_{2r}[NO]^*[O] RR_1, RR'_2, [NO]^* = f(T, [N_2], [O_2])$ $\frac{d\alpha}{dt} = \frac{1}{[NO]^*} \frac{d[NO]}{dt} = \frac{2RR_1}{[NO]^*} \left(\frac{1-\alpha^2}{1+\alpha RR_1/RR'_2}\right)$ okay for hot air, lean combustion; [O] partial equil?

Copyright © 2004 by Jerry M. Seitzman. All rights reserved

AE/ME 6766 Combustion

Simplified NO Formation Result

1.3 Time Scale

In the previous section, using the rate expression we can keep calculating the time constant. For the NO formation reactions:

$$N_2 + O \xrightarrow{k_{1f}} NO + N$$
 (13)

$$O_2 + N \xrightarrow{k_{2f}} NO + O$$
 (14)

@TSJ: sijian@umich.edu

3

	1000 K	1500 K	2000 K
$ au_{lf}$	$3 \times 10^{7} \mathrm{s}$	100 s	0.2 s
$ au_{2f}$	2 µs	0.5 µs	0.2 µs

Based on simulation result:

We can observe that the formation of NO from Zeldovich will be relatively slow except at very high temperatures.

1.4 Application Condition

1. Rate limited by the first forward reaction because of high activation energy

- 2. Dominates in high T (> 1800K), lean environment
- 3. Requires long residence time (usually in postflame)
- 4. Superequilibrium of [O] and [OH] increases the NO production rate

2 Intermediate N_2O Mechanism

2.1 Reactions

In this mechanism, N_2 converted to N_2O then NO:

$$N_2 + O(+M) \rightleftharpoons N_2 O(+M) \qquad \Delta H_R = -40 \; kcal/mol$$
 (15)

$$H + N_2 O \rightleftharpoons NO + NH \qquad \Delta H_R = +35 \ kcal/mol$$
 (16)

$$O + N_2 O \rightleftharpoons NO + NO \qquad \Delta H_R = -36 \; kcal/mol$$
 (17)

2.2 Application Condition

1. Important in low T, fuel lean systems

3 NNH Mechanism

3.1 Reactions

NO can also be produced via NNH intermediate:

$$N_2 + H(+M) \rightleftharpoons NNH(+M) \qquad \Delta H_R = +6.5 \ kcal/mol$$
 (18)

$$NNH + O \rightleftharpoons NO + NH \qquad \Delta H_R = -11.3 \ kcal/mol$$
 (19)

3.2 Application Condition

- 1. For T > 2200K, important for stoichiometric and rich, low residence time systems.
- 2. For T < 1900K, most impact near stoichiometric.

4 Fenimore/Prompt Mechanism

4.1 Reactions

In the previous three mechanisms, NO produced via conversion from attack on N_2/O_2 via radicals containing N, O, H nuclei. However, NO can also be produced in hydrocarbon combustion via C species.

$$CH + N_2 \rightleftharpoons HCN + N$$
 (20)

$$HCN + O \rightleftharpoons NCO + H$$
 (21)

$$NCO + H \rightleftharpoons NH + CO$$
 (22)

$$NH + H \rightleftharpoons N + H_2 \tag{23}$$

$$N + OH \rightleftharpoons NO + H$$
 (24)

4.2 Application Condition

1. Normally in rich mixtures so there are extra C species for the reactions.

5 NO_2 Mechanism

5.1 Reactions

 NO_2 can also be converted to NO during the combustion process.

$$NO + HO_2 \rightleftharpoons NO_2 + OH$$
 (25)

$$NO_2 + H \rightleftharpoons NO + OH$$
 (26)

$$NO_2 + O \rightleftharpoons NO + O_2$$
 (27)

5.2 Application Condition

- 1. No NO_2 from hot region
- 2. NO_2 from NO mixing into low T regions

6 Master Graph

Figure 2: Master Graph (1).

Figure 3: Master Graph (2).