
Transport Equations

1 Mass Conservation

Details could be found in Viscous Flow Continuity section. In this chapter, we
use v to replace u. Recall:

production︷︸︸︷
0 =

change︷︸︸︷
∂ρ

∂t
+

flux(out)︷ ︸︸ ︷
∇ · (ρv) (1)

2 Velocity

In combustion process, total velocity should be ”sum” of all species in mixture.
Mass Average Velocity:

v =

∑
ρivi∑
ρi

=

∑
ρivi

ρ
=

∑
Yivi (2)

Mass Diffusion Velocity:
Vi = vi − v (3)

Mole Average Velocity:

v∗ =
∑

Xivi (4)

Molar Diffusion Velocity:

V ∗
i = vi − v∗ (5)

3 Species Conservation

Species conservation could be derived from mass conservation. For each species:

production︷︸︸︷
ṁ′′′

i =

change︷︸︸︷
∂ρi
∂t

+

flux(out)︷ ︸︸ ︷
∇ · (ρivi) (6)

Here ṁ′′′
i is the source term, with the unit as kg/(m3 · s). It can also be expressed

as:
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Combustion · Transport Equations

ṁ′′′
i = W̄iω̇i (7)

Here:

1. W̄i is the molar mass of the species, with unit as kg/mole.

2. ω̇i is the rate of change of the concentration, with the unit as mole/(m3 · sec)

ω̇i =
d[Mi]

dt
= (v′′ji − v′ji){kjf

∏
[Mi]

v′ji − kjr
∏

[Mi]
v′′ji} (8)

dYi

dt
= ω̇i

W̄i

ρ
(9)

Then, from the previous section, the species velocity is:

vi = Vi + v (10)

Plug back in:

W̄iω̇i =
∂ρYi

∂t
+∇ · (ρYi(Vi + v))

= ρ
∂Yi

∂t
+ ρv · ∇Yi +∇ · (ρYiVi) +

����������:0

Yi
∂ρ

∂t
+ Yi∇ · (ρv)

(11)

Therefore:

W̄iω̇i = ρ
DYi

Dt︸ ︷︷ ︸
change+conv flux

+∇ · (ρYiVi)︸ ︷︷ ︸
diffusive flux

(12)

4 Diffusive Fluxes

Diffusive Mass Flux:

ji = ρYiVi = ρYi(vi − v) (13)

Here ji has the unit as kg/(m2 · s), meets the definition of mass flux.
Diffusive Molar Flux:

J∗
i = [M ]XiV

∗
i = [M ]Xi(vi − v∗) (14)

Here:

1. J∗
i has the unit as mole/(m2 · s), meets the definition of molar flux.

2. Xi is the molar fraction, dimensionless.

3. [M ] is the concentration, with the unit as mole/m3
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In average reference frame, sum of all diffusive fluxes leads to no net transport of
total mass (or moles), so: ∑

J∗
i =

∑
ji = 0 (15)

For the simple binary systems, recall the Fick’s Law:

ji = −ρDij∇Yi (16)

Where Dij is the binary diffusivity of species i in otherwise pure j. Therefore:

ji = −ρDij∇Yi = ρYiVi (17)

Therefore, we can get the mass diffusion velocity:

Vi = −Dij
∇Yi

Yi
= −Dij∇lnYi (18)

Similarly, we can get the molar diffusion velocity:

V ∗
i = −Dij∇lnXi (19)

5 Momentum Conservation

Details in Viscous Flow NS Equations chapter. For species:

ρ
∑
i

Yifi = ρ
Dv

Dt
+∇ · τ (20)

6 Energy Conservation

Details in Viscous Flow Energy chapter. With the following assumptions (Neglect):

1. Kinetic energy and potential energy

2. Radiation

3. Viscous dissipation and any work but flow work

4. Dufour effect

We can get the simplified energy equation:

ρ
Dh

Dt
=

Dp

Dt
+∇ · (k∇T )−

∑
∇ · hiji (21)
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7 Unity Lewis Approximation

Enthalpy of mixture:

dh = cpdT +
∑
i

hidYi (22)

Therefore:

k∇T −
∑

hiji = k(
∇h

cp
−

∑ hi

cp
∇Yi)−

∑
hiji

=
k

cp
∇h−

∑
hi(ji +

k

cp
∇Yi)

(23)

Recall the definition of Lewis number:

Le =
α

D
=

k

ρcpD
(24)

and:

ji = −ρDij∇Yi = − k

cpLe
∇Yi (25)

Therefore: ∑
hi(ji +

k

cp
∇Yi) =

∑
hi

k

cp
(1− 1

Le
)∇Yi (26)

If we assume Le = 1, we mean all species have same mass diffusivity, and
no net flux due to chem/cp difference, and the above equation will be zero. The
energy conservation equation now is:

Dh

Dt
=

1

ρ

Dp

Dt
+∇ · (α∇h) (27)

8 Temperature Equation

Also start from equation:

dh = cpdT +
∑
i

hidYi (28)

Transfer this to material derivative:

Dh

Dt
= cp

DT

Dt
+
∑
i

hi
DYi

Dt
(29)

Recall the species conservation equation:
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W̄iω̇i = ρ
DYi

Dt︸ ︷︷ ︸
change+conv flux

+∇ · (ρYiVi)︸ ︷︷ ︸
diffusive flux

(30)

DYi

Dt
=

1

ρ
(W̄iω̇i −∇ · (ρYiVi)) (31)

Also, we know the mass diffusive flux is:

ji = ρYiVi (32)

Therefore:

Dh

Dt
= cp

DT

Dt
+

1

ρ

∑
(W̄iω̇i −∇ · ji) (33)

Plug it into energy equation, we can get the temperature equation:

ρcp
DT

Dt
=

Dp

Dt
+∇ · (k∇T )−

∑
cpiji · ∇T −

∑
W̄iω̇ihi (34)

Here:

1.
Dp

Dt
: compressive work

2. ∇ · (k∇T ): thermal conduction

3.
∑

cpiji · ∇T : diffusion of sensible enthalpy by mass

4.
∑

W̄iω̇ihi: chemical energy conversion

If we assume small pressure change and small cp variations:

cpi ≈ cp (35)

Also we know the total mass diffusive fluxes should be zero:∑
ji = 0 (36)

Therefore:

ρ
DT

Dt
=

1

cp
∇ · (k∇T )−

∑ cpi
cp

ji · ∇T −
∑

W̄iω̇i
hi

cp

≈ ∇ · ( k
cp
∇T )−

∑
W̄iω̇i

hi

cp

(37)
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9 Shvab-Zeldovich Formulation

If we assume:

1. Steady flow

2. No body forces

3. Normal diffusion

4. Ignore radiation and viscous dissipation

5. 1D to describe all mas diffusion

We can get the simplified energy equation:

∇ · (ρvhsens − ρα∇hsens) = −
∑

ho
i,fW̄iω̇i (38)

and species equation:

∇ · (ρvYi − ρD∇Yi) = W̄iω̇i (39)

If we assume unity Lewis number, α = D, these two equations are similar.
Approximate values for various species in CH4-air flame:

Therefore, we can see that unity Lewis number assumption okay except for light
species.
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