Overview

1 Thermodynamics Categories

Compare classical TD, statistical TD and kinetics of gases.

Classical Thermodynamics	Statistical Thermodynamics	Kinetics of Gases
Deals with bulk matter	Treat matter as a collection	Treat matter as a collection
without regards for	of molecules	of moving molecules
molecules		
Based on empirical laws	Uses a statistical approach	
Determines relations	Provides framework to	
between TD quantities	interpret EM radiation	
Problematic at high		
temperatures		
Time	Time	Deals with rate processes
independent/Equilibrium	independent/Equilibrium	(time is a variable)
only	only	

Figure 1: Comparison

Some remarks:

- 1. **Thermodynamics** is the interaction about energy and matter, and the radiation is about the pure energy, no matter.
- 2. Statistics Thermodynamics is in microscopic view, focuses on calculating properties of matter.
- 3. **Kinetics** is not in equilibrium.

2 Zeroth Law

Bodies are in thermal equilibrium with each other only when they have the same degree of hotness. Therefore, there must be a TD property that is a measure of hotness, we call it temperature. Under this definition, temperature is a property of matter and can only be defined when a body is in equilibrium.

If bodies A and B are in thermal equilibrium with a third body C, then A and B are in thermal equilibrium with each other.