
Basics

1 Definition

In computer science, an algorithm is a set of well-defined instructions or rules de-
signed to perform a specific task or solve a particular problem. Think of it as a recipe
in cooking: it provides step-by-step directions on how to accomplish something.

2 Proof

On every valid input, the algorithm produces the output satisfies the required in-
put/output relationship. However, this requires proof.

2.1 Proofs by Counterexample

Proof by counterexample is a method of disproving a statement or proposition in
mathematics. The approach is straightforward: if you want to show that a general
statement (like ”all swans are white”) is false, you only need to find a single instance
or case (a counterexample) where the statement does not hold true (like finding a black
swan).

2.2 Proofs by Contradiction

In this approach, you start by assuming the opposite of what you want to prove.
Then, through logical reasoning, you demonstrate that this assumption leads to a con-
tradiction, a situation where two opposing statements are both true, or where the
assumption leads to an absurd or impossible conclusion.

2.3 Inductive Proofs

Inductive proofs, commonly used in mathematics, are a method of proving state-
ments or theorems that are generally formulated as ”for all integers n”, where n is a
natural number. This method is particularly effective for proving statements about
sequences or series, mathematical properties, and patterns that continue indefinitely.
The process involves two main steps:

1. Base Case: First, you establish the truth of the statement for the initial value
of n, usually n = 1. This step is crucial as it serves as the foundation for the
inductive process.
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2. Inductive Step: Next, you assume that the statement is true for some arbitrary
natural number n = k (this is called the inductive hypothesis), and then you
use this assumption to prove that the statement must also be true for the next
number in the sequence, n = k + 1

2.4 If and Only If Proofs

An ”if and only if” proof in mathematics is used to establish a biconditional state-
ment, where two conditions are both necessary and sufficient for each other. In
formal terms, a statement ”A if and only if B” means that A is true exactly when B is
true, and vice versa. Such a statement is often abbreviated as ”A iff B”.

To prove this statement, two things need to be proved:

1. If A, then B

2. If B, then A

3 Running Time

Simple operation only takes 1 step, such as plus, minus, equal, if and so on. However,
loop and subroutine calls are not simple operations. They depend upon the size
of the data and the contents. The running time is defined as the number of steps
taken by the algorithm, given input size. The time complexity of an algorithm T (n)
associates the maximum (worst-case) amount of time taken on input of size n,
where T is a function mapping non-negative integers (problem sizes) to real numbers
(number of steps).

3.1 Asymptotic Order of Growth

1. Upper bounds (worst-case): the maximum number of steps taken on any
instance of size n. In math notation, T (n) is O(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0 we have:

T (n) ≤ c · g(n) (1)

Or we can say T grows slower or equal to g.

2. Lower bounds (best-case): the minimum number of steps taken on any in-
stance of size n. In math notation, T (n) is Ω(g(n)) if there exist constants c > 0
and n0 ≥ 0 such that for all n ≥ n0 we have:

T (n) ≥ c · g(n) (2)

Or we can say T grows faster or equal to g.

3. Tight bounds (average-case): the average number of steps taken on any in-
stance of size n. In math notation, T (n) is Θ(g(n)) if T (n) is both O(g(n)) and
Ω(g(n)). Or we can say T and g have the same rates.
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Figure 1: Upper case and lower case

3.2 Properties

3.2.1 Transitivity

1. If f ∈ O(g) and g ∈ O(h) then f ∈ O(h)

2. If f ∈ Ω(g) and g ∈ Ω(h) then f ∈ Ω(h)

3. If f ∈ Θ(g) and g ∈ Θ(h) then f ∈ Θ(h)

3.2.2 Additivity

1. If f ∈ O(h) and g ∈ O(h) then f + g ∈ O(h)

2. If f ∈ Ω(h) and g ∈ Ω(h) then f + g ∈ Ω(h)

3. If f ∈ Θ(h) and g ∈ Θ(h) then f + g ∈ Θ(h)

4 Polynomial vs Logarithmic vs Exponential

4.1 Polynomial

The polynomial time is defined as O(nd) for some constant d independent of the
input size n. For a polynomial model:

a0 + a1n+ ...+ adn
d (3)

The time complexity will be Θ(nd) if ad > 0.

4.2 Logarithmic

Logarithmic time complexity, denoted as O(log n), is a term used in computer sci-
ence to describe an algorithm that has its running time increase logarithmically in
relation to the size of the input data set. Notice that the base does not matter because:

logbn =
logan

logab
(4)

Therefore for any constants a, b > 0:

O(logan) = O(logbn) (5)
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4.3 Exponential

Exponential time complexity, usually defined as O(bn), where b is a constant base
greater than 1, refers to an algorithm whose running time will be multiplied by b with
each additional element in the input data set. In other words, the growth of the runtime
is proportional to a fixed power of the size of the input.

4.4 Interrelations

1. Logarithms grow slower than every polynomial for every d > 0, no matter how
small d is. In other words:

log n ∈ O(nd) (6)

This means logarithmic time complexity is also a polynomial time complexity.

2. Exponentials grow faster than every polynomial for every b > 1 no matter how
close to 1, and every d > 0 no matter how big. In other words:

nd ∈ O(bn) (7)

3. Stirling’s Approximation:

ln(n!) = nln(n)− n+O(ln(n)) (8)

n! ≈
√

(2πn)(
n

e
)n (9)

log2(n!) = n log2 n− n log2 e+O(log2 n) (10)
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