
Divide-and-Conquer

1 Definitions

1. Divide up problem into several subproblems of the same kind.

2. Conquer (solve) each subproblem recursively.

3. Combine solutions to subproblems into overall solution.

2 Merge Sort

2.1 Overview

1. Divide array into two halves

2. Recursively sort each half (mergesort each half)

3. Merge two halves to make sorted whole.

Figure 1: Merge Sort Overview

2.2 Merge Analysis

1. Scan two pre-sorted list left to right.

2. Keep track of smallest element in each sorted half.

3. Insert the smallest of two elements into auxiliary array.

1



Algorithm · Divide-and-Conquer

4. Update the smallest element in each sorted half, repeat until done.

Figure 2: Merge Analysis

2.3 Recurrence

Define T (n) as the max number of compares to merge sort a list of size ≤ n. Then
the merge sort recurrence could be expressed as:

T (n) ≤

{
0 if n = 1

T (⌈n/2⌉) + T (⌊n/2⌋) + n otherwise
(1)

2.3.1 n as a power of 2

The solution of this recurrence when n is a power of 2, from proposition we have:

T (n) = n log2 n (2)

Figure 3: Recurrence, n as power of 2

If we increase n by 2, we get:

@TSJ: sijian@umich.edu 2



Algorithm · Divide-and-Conquer

T (2n) = 2T (n) + 2n

= 2n log2 n+ 2n

= 2n(log2 n+ log2 2− 1) + 2n

= 2b(log2(2n)− 1) + 2n

= 2n log2(2n)

2.3.2 n not as a power of 2

3 Closest Pair

3.1 Problem Definition

Figure 4: Closet Pair of Points Definition

@TSJ: sijian@umich.edu 3



Algorithm · Divide-and-Conquer

Given n points in the plane, find a pair of points with the smallest Euclidean distance
between them. Euclidean distance is a measure of the true straight line distance
between two points in Euclidean space. For example, if we have two points (x1, y1) and
(x2, y2), then the euclidean distance is calculated as:

d =
√
(x2 − x1)2 + (y2 − y1)2 (3)

3.2 Divide-and-Conquer Algorithm

3.2.1 Divide

Draw vertical line L so that n/2 points on each side.

3.2.2 Conquer

Find closest pair in each side recursively.

3.2.3 Merge

Find closest pair with one point in each side. Then return the best of 3 solutions.

Figure 5: Merge Step

To find the closest pair with one point in each side, we assume that distance ≤ δ,
where:

δ = min(left.min, right.min) (4)

Based on the observation, we only need to consider points within δ of line L. We
sort points in 2δ strip by their y coordinates. We only check distances of those within
11 positions in sorted list, which could be proved below:

@TSJ: sijian@umich.edu 4



Algorithm · Divide-and-Conquer

Figure 6: 11 neighbours proof

3.3 Implementation

3.3.1 O(n log2 n)

Figure 7: O(n log2 n) Algorithm

@TSJ: sijian@umich.edu 5



Algorithm · Divide-and-Conquer

The recurrence solution could be expressed as:

T (n) ≤

{
Θ(1) if n = 1

T (⌈n/2⌉) + T (⌊n/2⌋) +O(n log n) otherwise
(5)

For the recursive steps, we keep dividing n into 2 parts, so there will be log n levels.
For each level, the merge will take runtime O(n log n). Therefore, the total runtime will
be O(n log2 n).

3.3.2 O(n log n)

This algorithm could be improved if we don’t sort points in strip from scratch each
time. So each recursive returns two lists with all points sorted by x, y coordinates, and
then we sort by merging two pre-sorted lists.

Figure 8: O(n log n) Algorithm

The recurrence solution could be expressed as:

T (n) ≤

{
Θ(1) if n = 1

T (⌈n/2⌉) + T (⌊n/2⌋) +O(n) otherwise
(6)

4 Master Theorem

The recipe for solving common divide-and-conquer recurrences could be expressed
as:

T (n) = aT (
n

b
) + f(n) (7)

@TSJ: sijian@umich.edu 6



Algorithm · Divide-and-Conquer

Where:

1. T (0) = 0 and T (1) = Θ(1)

2. a ≥ 1 is the number of subproblems, also called the branching factor.

3. b ≥ 2 is the factor by which the subproblem size decreases.

4. f(n) ≥ 0 is the work to divide and combine subproblems (merge).

5. ai is the number of subproblems at level i.

6. k = logb n levels

7. n/bi is the size of subproblem at level i

If f(n) is Θ(nd), then we can use master method:

T (n) =


Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlogb a) if a > bd
(8)

There are several conditions we can not use master theorem:

1. f(n) is not a polynomial, for example, f(n) = 2n

2. b can not be expressed as a constant, for example, T (n) = aT (
√
n) + f(n)

@TSJ: sijian@umich.edu 7


	Definitions
	Merge Sort
	Overview
	Merge Analysis
	Recurrence
	n as a power of 2
	n not as a power of 2


	Closest Pair
	Problem Definition
	Divide-and-Conquer Algorithm
	Divide
	Conquer
	Merge

	Implementation
	O(n2 n)
	O(nn)


	Master Theorem

