Dynamic Programming

Introduction

Dynamic programming is a method used in algorithms to solve complex problems
by breaking them down into simpler subproblems. It’s a technique for solving problems
efficiently by storing the results of expensive function calls and reusing them when the
same inputs occur again, thus reducing the computation time.

1.1 Properties

There are two main properties of dynamic programming;:

1. Optimal Substructure: This means that the optimal solution to the problem

can be constructed from the optimal solutions of its subproblems. In other words,
a problem has an optimal substructure if an optimal solution can be created by
combining optimal solutions to its subproblems.

. Overlapping Subproblems: This occurs when the problem can be broken
down into subproblems which are reused several times. In contrast to divide-
and-conquer algorithms that solve each subproblem fresh, dynamic programming
saves the result of these subproblems to avoid recomputing their solutions.

1.2 Implementation

Dynamic programming can be implemented in two ways:

1. Top-Down Approach (Memoization): This approach involves starting from

the top and breaking the problem down into subproblems. As solutions to sub-
problems are computed, they are stored in a memory structure (such as a hash
table or array). If the same subproblem occurs again, the solution is retrieved
from the memory instead of being recomputed. This approach uses recursion and
memoization.

. Bottom-Up Approach (Tabulation): This method starts from the simplest

subproblems and iteratively solves larger subproblems using the solutions to smaller
subproblems. It fills up a table (usually an array or a matrix) in a way that every

step towards solving the larger problem builds on the solutions of the smaller

subproblems. This approach is iterative and often more space-efficient than the

top-down approach.

Algorithm - Dynamic Programming

1.3 Comparison with Greedy Algorithm

Both algorithms are to find the optimal substructures which are constructed from
optimal solutions to subproblems. However, for Greedy algorithm:

1. It does not guarantee optimality.

2. Make decisions based on local subproblem; once a choice is makde, it is not
changed.

For Dynamic Programming:

1. It guarantees optimality; equivalent to exhaustive search; efficient because of the
reuse of subproblems.

2. Makes decisions based on all the decisions made in the previous stage, and may
reconsider the previous stage’s algorithmic path to solution.

2 Recipe
The general approach of the DP problem is:

1. Characterize structure of problem: identify subproblems whose optimal solu-
tions can be used to build an optimal solution to original problem. Conversely,
given an optimal solution to original problem, identify subparts of the solution
that are optimal solutions for some subproblems.

2. Write the recurrence and initial cases, know where the solution of problem is.

3. Look at precedence constraints (draw a figure) and write the algorithm (iterative,
or recursive with memos).

4. Study the problem complexity (straightforward with iterative algorithm; don’t
forget the time to compute one subproblem).

5. Construct optimal solution from computed information (back-tracing).

@TSJ: sijjan@umich.edu 2

Algorithm - Dynamic Programming

3 Weighted Interval Scheduling

3.1 Problem Definition

c

NN ..

]
=
[
=%
J
(8]
]

Figure 1: Weighted Interval Scheduling

Assume job j starts at s;, finishes at f;, and has weight v;. Define two jobs compat-
ible if they don’t overlap. The goal is to find maximum weight subset of mutually
compatible jobs.

3.2 Failure of Greedy Algorithm
Recall that the greedy algorithm when all weights are 1:

1. Consider jobs in ascending order of finish time

2. Add job to subset if it is compatible with previously chosen jobs

But this algorithm will easily fail if arbitrary weights are allowed:

weight = 999 — : : : : : ' :

1 2 3 4

> lime

Figure 2: Failure of Greedy Algorithm

@TSJ: sijjan@umich.edu 3

Algorithm - Dynamic Programming

3.3 Binary Choice

Now consider an optimal solution O for jobs {1,2,...,n}. No matter what O is, for
job n, we have two cases: either O contains the last job n, or O does not
contain the last job n. Define p(j) as the largest index i < j such that job i is
compatible with j.

3.3.1 O Contains Job n

If O contains job n, then for the remaining part of the solution O — {n}:

1. O—{n} could not contain any job that is incompatible with n (job p(n)+1, p(n)+
2,--- ,n—1), or in other words, it only contains jobs in {1,2,--- ,p(n)}

2. Since we assume O is feasible, so O —{n} is also a feasible solution for the problem
of scheduling {1,2,--- ,p(n)}

3. Also, O — {n} must be an optimal solution for scheduling {1,2,--- ,p(n)}.
Otherwise, we can take the optimal solution for {1,2,--- p(n)} and safely add
job n to it, obtain an overall solution O’ better than the given optimal solution
0.

3.3.2 O Does not Contain Job n

If O does not contain job n:

1. Then O is a feasible solution for scheduling jobs {1,2,--- ,n — 1}

2. If O is not the optimal solution for {1,2,--- ,n — 1}, then we can replace it with
the optimal solution and obtain a better solution also for scheduling 1,2,--- ,n

3. Therefore, O must contain the optimal solution for scheduling 1,2,--- ,n —1

3.3.3 Final Expression

Define OPT(j) = value of optimal solution to the problem consisting of
jobs {1,2,--- j}, with two cases:

e OPT(j) selects job j: must include optimal solution to problem consisting of
remaining compatible jobs {1,2,--- p(j)} with value OPTp(j) and collect the
profit v; from including j, so the expression is:

OPT(j) = v(j) + OPT(p(j))

e OPT(j) does not select job j: must include optimal solution to problem consisting
of remaining compatible jobs {1,2,--- | j}, so the expression is:

OPT(j) = OPT(j 1) 2)

@TSJ: sijjan@umich.edu 4

Algorithm - Dynamic Programming

So the final recurrence relation is:

or1() < {° if j =0
777 max {v; + OPT(p(j)),OPT(j — 1)} otherwise

3.4 Memoization Implementation

In memoization, we store results of each sub-problem in a cache, lookup as needed.
The pseudo code is shown below:

f,...f v

n, 1 n, 1""’V

Input: n, BpocacS N

Sort jobs by finish times so that f, <f, <... <f .
Compute p(1), p(2), ..., p(n)

forj=1ton
M[j] = empty -

array

M-Compute-Opt(n)

M-Com pute-Opt(j) {
if (M[j] is empty)
M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]
}

Figure 3: Memoization Implementation

Now we do the runtime analysis for memoization:

1. The sorting by finish time will take O(nlogn)

2. To compute p(), we could use binary search for each j to find the satisfied job,
which will take O(logn). Since we do this for each of the n jobs, the total time
for this step is O(nlogn)

3. For the function M-Compute-Opt(j), each invocation takes O(1) time, either:

e Return an existing value M|j]

e Fills in one new entry M[j] and makes two recursive calls (constant)

We need to call M-Compute-Opt(j) n times, so the runtime will be O(n).

Therefore, the runtime for memoization implementation is O(nlogn). But if jobs
are pre-sorted by start and finish times, the runtime could reduce to O(n).

@QTSJ: sijian@umich.edu 5

Algorithm - Dynamic Programming

3.5 Tabulation Implementation

For the bottom-up dynamic programming, the pseudo code is shown below:

Input: n, s,,...,s, f...f vy,
Sort jobs by finish times so that f, <f, <... <f .
Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {
M[0] = O
forj=1ton
M[j] = max(v; + MIp()], M[j-1])
}

Figure 4: Tabulation Implementation

Now we do the runtime analysis for this implementation, it is nearly the same as
memoization:

1. Sorting will take O(nlogn)
2. Computing p() will take O(nlogn)
3. M-Compute-Opt(j):

e Initializing M[0] = 0 takes constant time, O(1)

e The loop runs from 1 to n, each iteration involves a constant amount of work,
computing the maximum of two values. Therefore, the time complexity is

O(n)

Therefore, the runtime for tabulation implementation is O(nlogn). But if jobs are
pre-sorted by start and finish times, the runtime could reduce to O(n).

3.6 Back-Tracing

The back-tracing function is implemented as below:

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if j =0)
output nothing
else if (v, + M[p()] > M[j-1])
print j
Find-Solution(p(j))
else
Find-Solution(j-1)
}

Figure 5: Back Tracing Implementation

@QTSJ: sijian@umich.edu 6

Algorithm - Dynamic Programming

The worst case, Find-Solution calls itself every time until j reaches 0, so the time
complexity is O(n).

4 Longest Common Subsequence (LCS)

4.1 Problem Definition

Given two strings/sequences, for example X = A, B,C, B, D, A, B;Y = B,D,C, A, B, A.
Now we want to find the Longest Common Subsequence (a sequence of letters that ap-
pears in both X and Y but not necessarily contiguously). Here.

Subsequence: BCBA
X=AB C BDAB
Y= BDCAB A

Figure 6: LCS

4.2 Algorithm

First define two sequences:

X =A{x1, 29, , 2, } (4)

Yn:{ylyy27”' 7yn} (5)
And also define Z as the optimal solution, which is just a LCS of X and Y:

Zk‘ — {Zla 22yt 72145} (6)

Now we consider the problem case by case:

1. if x,, = y,: then by the definition of LCS, we have z,, = y, = 2. This implies
that Z;_y must be in LCS(X,—1, Yn-1).

2. if x,, # Y-

e Either z,, # z;: which means 7, does not contain x,,, and Z isin LC'S(X,—1, Yy)

e Or z,, = z; and y, # z;: which means Z, does not contain y,, and Zj is in
LCS(X, Yn1)

The update process will be:

1. If 2, = yn, find solution to LCS(X,,_1,Y,_1) and append z,,.

2. If z,, # yn, find solution for each of the two subproblems LCS(X,, 1,Y,)
and LCS(X,,,Y,-1), and choose the longer one.

@QTSJ: sijian@umich.edu 7

https://www.youtube.com/watch?v=sSno9rV8Rhg&t=55s

Algorithm - Dynamic Programming

Notice that there is an overlapping problem here, LC'S(X,, 1,Y,_1) can appear
as a subproblem when solving LC'S(X,,—1,Y,) and LCS(X,,, Yo—1).
Therefore, the final recurrence relation could be expressed as:

0 ifi=0orj=0
ci,jl=<cli—1,7—-1+1 if x; =y, (7)
max{c[i — 1, j],c[i,j — 1]} otherwise

4.3 Memoization Implementation

The pseudo code is shown below:

memo = { }

c(7, /):
if (7, /) In memo: return memo
else 1f i=0 OR j=0: return 0
else if X7y f=c(i-1, j-1)+1
else f=max{c(i, j-1), c(i-1, j)}

5,71

memo| i, j|=f
return f
return c(m,n)

Figure 7. LCS Memoization Implementation

Each subproblem c[i, j] is computed only once, with constant recursive calls per
time. There are at most m x n subproblems, so the time and space complexities are

both O(m x n).

4.4 Tabulation Implementation

The pseudo code is shown below:

0. m = length(X) // get the # of symbols in X

1. n = length(Y) // get the # of symbols in Y

2. allocate matrix c of size (m+1)x(n+1)
3.fori=T1Ttom ([i,0]=0 // special case: Y,
4.forj=1ton c[0,j]=0 // special case: X,

5.fori=1tom // for all X; (rows)

6 forj=1ton // for all Yj (columns)
7. if (Xi==Yj)

8 cfi,jl = c[i-1,j-11+ 1 // match

9 else c[i,j] = max(c[i-1,j], c[i,j-11)

10. return c

Figure 8: LCS Tabulation Implementation

@QTSJ: sijian@umich.edu 8

Algorithm - Dynamic Programming

Because there are two nested loop, so the time and space complexities are both

O(m x n).

4.5 Back-Tracing

The pseudo code is shown below:

Run Find-Solution(m,n)

Find-Solution(i, j) {

if i=0o0rj=0)
return
else
if (x, =)
print x;
Find-Solution(i-1, j-1)
else

if (c[i-1,4] > cli, j-1]
Find-Solution(i-1, j)
else
Find-Solutioni, j-1)
}

Figure 9: LCS Back Tracing Implementation

5 Knapsack Problem

5.1 Problem Definition

Given n items, and define item ¢ weighs w; > 0 and has value v; > 0. Assume
knapsack has weight capacity of W. The goal is to pack knapsack so as to maximize
total value.

5.2 Failure of Greedy Algorithm

Notice this problem is different from the homework problem. In the homework
problem, the item could be added as a fraction, but here could not. Therefore, the
greedy algorithm to repeatedly add item with maximum ratio = will fail.

5.3 Algorithm

In this problem, there are two constraints, one is to maximize value, the other is to
satisfy the weight capacity requirement. Therefore, we need two variables for the
subproblem.

Define OPT (i, w) as the max-profit subset of items {1,2,--- i} with weight limit
w. The goal is to find OPT'(n, W). There are two possible cases:

1. OPT(i,w) does not select item i because of the weight limit: OPT (i, w)
will become OPT (i —1,w), selecting the best of {1,2,--- ,i—1} with weight limit
as w.

2. OPT(i,w) selects item i:

@QTSJ: sijian@umich.edu 9

Algorithm - Dynamic Programming

e Collect value v;

e New weight limit will become w — w;

e OPT(i,w —w;) selects best of {1,2,---,i — 1} using new weight limit.

Therefore, the final recurrence relation could be expressed as:

0 ifi=0
OPT(i,w) = ¢ OPT(i — 1,w) if w; > w
max{OPT (i — 1,w),v; + OPT(i — 1,w —w;)} otherwise

6 Summary

The general forms of the dynamic programming include:

1. Binary choice: Weighted interval scheduling
2. Multi-way choice: RNA secondary structure
3. Dynamic programming over intervals: RNA secondary structure

4. Adding a new variable: Knapsack

@QTSJ: sijian@umich.edu

10

	Introduction
	Properties
	Implementation
	Comparison with Greedy Algorithm

	Recipe
	Weighted Interval Scheduling
	Problem Definition
	Failure of Greedy Algorithm
	Binary Choice
	O Contains Job n
	O Does not Contain Job n
	Final Expression

	Memoization Implementation
	Tabulation Implementation
	Back-Tracing

	Longest Common Subsequence (LCS)
	Problem Definition
	Algorithm
	Memoization Implementation
	Tabulation Implementation
	Back-Tracing

	Knapsack Problem
	Problem Definition
	Failure of Greedy Algorithm
	Algorithm

	Summary

