
Graphs

1 Definition

Graphs in algorithms refer to a fundamental data structure used to represent a
network of nodes (also known as vertices) and the connections between them, called
edges. In math notation, we define graph as:

G = (V,E) (1)

Here:

1. V : nodes

2. E: edges between pairs of nodes (undirected, directed, weighted)

3. n: number of nodes

4. m: number of edges

2 Adjacency Matrix

The adjacency matrix is a way of representing a graph as a matrix of booleans or
integers. In this matrix, the rows and columns represent the vertices (nodes) of the
graph, and the matrix elements indicate whether pairs of vertices are adjacent or not
in the graph. Some general characteristics for all kinds of n vertices and m edges:

1. Space proportional to n2.

2. Checking if (u, v) is an edge takes Θ(1) time.

3. Identifying all edges takes Θ(n2) time.

2.1 Undirected Graph

An undirected graph is a type of graph in which the edges have no orientation or
direction. One example is shown below:

1



Algorithm · Graphs

Figure 1: Undirected Graph

Figure 2: Undirected Graph Matrix

Notice that the undirected graph is binary and symmetric.

2.2 Directed Graph

Figure 3: Directed Graph

@TSJ: sijian@umich.edu 2



Algorithm · Graphs

Figure 4: Directed Graph Matrix

Notice that the directed graph is binary and not symmetric.

2.3 Weighted Directed Graph

Figure 5: Weighted Directed Graph

Figure 6: Weighted Directed Graph Matrix

@TSJ: sijian@umich.edu 3



Algorithm · Graphs

Notice that the directed graph is not binary and not symmetric.

2.4 Adjacency List

The adjacency matrix is actually a sparse matrix. Therefore, we can simplify this
matrix into an adjacency list:

Figure 7: Adjacency List

Recall that n is the number of nodes, m is the number of edges, there are some
general characteristics of adjacency matrix:

1. Space proportional to m+ n.

2. Checking if (u, v) is an edge takesO(deg(u)) time. In an adjacency list, each vertex
has its own list of adjacent vertices. The degree of a vertex u is denoted as
deg(u). Therefore, to find an edge (u, v) we must traverse the list of neighbors of
u.

3. Identifying all edges takes Θ(m+ n) time.

@TSJ: sijian@umich.edu 4



Algorithm · Graphs

3 Shortest Path Problem

Figure 8: Shortest Path Problem

Given a directed graph G = (V,E), edge lengths le ≥ 0, source s ∈ V , find a shortest
directed path from s to every node. The basic assumption is that there exists a path
from s to every node.

4 Dijkstra’s Algorithm

Dijkstra’s algorithm is designed for finding the shortest path from a starting node
to all other nodes in a graph with non-negative edge weights. The algorithm works
by iteratively picking the unvisited node with the lowest distance from the
start, calculating the distance through it to each unvisited neighbor, and
updating the neighbor’s distance if it is smaller. The process is repeated
until all nodes have been visited. The result is the shortest path from the
start node to every other node in the graph.

4.1 Math Expressions

Define the following parameters:

1. S: a set of explored nodes

2. u: a node in S, an explored node

3. v: a node not is S, an unexplored node

4. s: starting node

5. d(u): shortest path distance

The algorithm is shown below:

@TSJ: sijian@umich.edu 5



Algorithm · Graphs

1. Initialize the explored node set by S ← {s} and d[s]← 0

2. Repeatedly choose unexplored node v /∈ S which minimizes:

π(v) = min
e=(u,v):u∈S

(d[u] + le) (2)

Here, d[u] + le is the length of a shortest path from s to some node u in explored
part S, followed by a single edge e = (u, v).

4.2 Demo

Assume we have this directed weight graph:

Figure 9: Directed Weight Graph

We want to calculate the shortest distance from A to each other node. Now the
visited node set S is empty, and the shortest distances are summarized below:

Node Shortest Distance Previous Node
A 0 -
B ∞ -
C ∞ -
D ∞ -
E ∞ -
F ∞ -

4.2.1 A

The steps include:

1. Explore all the edges of A point, we have B and D connected.

2. Update the table by their weights.

@TSJ: sijian@umich.edu 6



Algorithm · Graphs

Figure 10: A point

Node Shortest Distance Previous Node
A 0 -
B 2 A
C ∞ -
D 8 A
E ∞ -
F ∞ -

And the visited node set S = {A}.

4.2.2 B

The steps include:

1. Because B has lower weight than D from A, so now we explore the edges (unex-
plored ones) of B.

2. We can reach E, record it. We can also reachD, and the new path is 2+5 = 7 < 8,
so we update the D row.

Figure 11: B point

@TSJ: sijian@umich.edu 7



Algorithm · Graphs

Node Shortest Distance Previous Node
A 0 -
B 2 A
C ∞ -
D 7 B
E 8 B
F ∞ -

And the visited node set S = {A,B}.

4.2.3 D

The steps include:

1. Now because D has lower total path length than E, then now we explore the
edges of D.

2. We reach E, but the new path length is 7 + 3 > 8, so we will not record it.

3. We can also reach F , record it.

Figure 12: D point

Node Shortest Distance Previous Node
A 0 -
B 2 A
C ∞ -
D 7 B
E 8 B
F 9 D

And the visited node set S = {A,B,D}.

@TSJ: sijian@umich.edu 8



Algorithm · Graphs

4.2.4 E

The steps include:

1. Now E has lower path length than F , so we choose E.

2. We reach F again, but the path length is the same, so we will not record it.

3. We reach C from E, record it.

Figure 13: E point

Node Shortest Distance Previous Node
A 0 -
B 2 A
C 17 E
D 7 B
E 8 B
F 9 D

And the visited node set S = {A,B,D,E}.

4.2.5 F

The steps include:

1. Now F has lower path length, start with it.

2. Reach C again from F , and the path length is 9 + 3 = 12 < 17, so we update it.

@TSJ: sijian@umich.edu 9



Algorithm · Graphs

Figure 14: F point

Node Shortest Distance Previous Node
A 0 -
B 2 A
C 12 F
D 7 B
E 8 B
F 9 D

And the visited node set S = {A,B,D,E, F}.

4.2.6 C

The steps include:

1. Now we only have C unvisited, but actually we already go through all the edges
connected to C, so the table will not updated.

And the visited node set S = {A,B,C,D,E, F}

4.3 Proof

Now we want to prove the correctness of Dijkstra’s algorithm, which has the struc-
ture of greedy stays ahead. We choose inductive proof method.

1. Invariant: the invariant is a property or statement that remains true across each
step of the induction process. In this case, the invariant is that for each node
u ∈ S, d[u] is the length of a shortest path from s to u

2. Proof : Greedy algorithm is optimal.

3. Base Case: When S = {s}, d[s] = 0, true proof.

4. Inductive Step:

@TSJ: sijian@umich.edu 10



Algorithm · Graphs

(a) Step 1: Select the next vertex u with the minimum d[u] among all vertices
not yet finalized. By our induction hypothesis and the way algorithm works,
u is guaranteed to have the shortest distance from s out of all vertices not
yet finalized.

(b) Step 1 Proof: Suppose there exists a vertex u′ /∈ S with a shorter path
from s that has not been considered yet. This path must pass through at
least one vertex not in S, say x, because all paths through vertices in S
have already been considered (as those distances are finalized and assumed
to be correct). However, this implies that d[x] would be less than d[u], which
contradicts the selection of u as the vertex with the minimum value among
all non-finalized vertices

(c) Step 2: Update the distances to all neighbors v of u by checking if d[u] +
le(u, v) < d[v]. If so, update d[v] to d[u] + le(u, v). This step ensures that we
are considering the shortest possible distance to v through u, based on the
greedy algorithm.

(d) Conclusion: By induction, if the algorithm correctly identifies the shortest
paths to a set of finalized vertices S at each step, it will also correctly identify
the shortest path to the next vertex u to be finalized. This process repeats
until all vertices are finalized, ensuring that the algorithm correctly computes
the shortest paths from s to all other vertices in S.

5 Dijkstra’s Algorithm Optimization

5.1 Introduction to Priority Queue (PQ)

A priority queue is an abstract data type in computer science that operates similarly
to a regular queue or stack, but with an important difference: each element in the
priority queue has a priority associated with it. In a priority queue, an element
with higher priority is served before an element with lower priority. If two elements have
the same priority, they are served according to their order in the queue. The choice of
implementation affects the efficiency of various operations (such as insertion, deletion,
and finding the minimum or maximum element), making some implementations more
suitable for certain situations than others.

The primary operations of a priority queue include:

1. Insertion (Enqueue): Adding a new element to the queue with its associated
priority.

2. Deletion (Dequeue): Removing the element with the highest priority from the
queue and returning it.

3. Peek:Returning the element with the highest priority without removing it from
the queue.

@TSJ: sijian@umich.edu 11



Algorithm · Graphs

5.2 Priority Queue Application

We can use mini-oriented PQ to choose an unexplored node that minimizes π[v].
The algorithm is shown below:

Figure 15: PQ Algorithm

The algorithm includes the following part:

5.2.1 Initialization

1. Initialize the distance to all vertices, denoted as π[v], to infinity, except for the
starting vertex s, which is set to 0.

2. The predecessor of all vertices pred[v] is set to null.

5.2.2 Priority Queue

1. A priority queue PQ is created, which will store all vertices of the graph along
with their current shortest distance from source s.

2. Every vertex v is inserted into PQ with its associated initialized distance π[v].

5.2.3 Main Loop

1. The algorithm then enters a loop that continues as long as the priority queue is
not empty.

2. Inside the loop, the algorithm extracts the vertex u with the minimum
distance value from the priority queue using Del−Min(PQ). This vertex
is the one that is closest to the starting vertex s among all vertices currently in
the PQ.

@TSJ: sijian@umich.edu 12



Algorithm · Graphs

3. Next step is to consider all edges e leaving u. For each edge (u, v), the algorithm
checks if the distance to v via u is shorter than the current known distance π[v].
This is called relaxation step.

4. If a shorter path is found, the algorithm updates the distance to v (π[v]) to reflect
this shorter path.

5. It also updates the predecessor of v to u.

6. The Decrease−key(PQ, v, π[v]) operation updates the distance value of v in PQ,
as its priority (which is the same as the shortest distance to s) has now decreased.

5.3 Demo

Suppose we have the following directed weighted graph, we want to find shortest
path from s to t using PQ.

Figure 16: PQ Demo

5.3.1 Initialization

First we have the explored node set as S, PQ, and priority recorder (inside PQ)
and the predecessor recorder:

S = {} (3)

PQ = {s, 2, 3, 4, 5, 6, 7, t} (4)

priority = {0,∞,∞,∞,∞,∞,∞,∞} (5)

@TSJ: sijian@umich.edu 13



Algorithm · Graphs

Node Shortest Distance Previous Node
s 0 -
2 ∞ -
3 ∞ -
4 ∞ -
5 ∞ -
6 ∞ -
7 ∞ -
t ∞ -

5.3.2 Vertex s

Now, s is the vertex with the minimum distance value, so we extract it. It can reach
2, 6, 7 nodes, and their distances will be shorter than ∞ for sure. So we update the
priority.

S = {s} (6)

PQ = {2, 3, 4, 5, 6, 7, t} (7)

priority = {9,∞,∞,∞, 14, 15,∞} (8)

Node Shortest Distance Previous Node
s 0 -
2 9 s
3 ∞ -
4 ∞ -
5 ∞ -
6 14 s
7 15 s
t ∞ -

5.3.3 Vertex 2

Now vertex 2 is the minimum priority, extract it. It can reach 3, update the priority
of it (9 + 24 = 33).

S = {s, 2} (9)

PQ = {3, 4, 5, 6, 7, t} (10)

priority = {33,∞,∞, 14, 15,∞} (11)

@TSJ: sijian@umich.edu 14



Algorithm · Graphs

Node Shortest Distance Previous Node
s 0 -
2 9 s
3 33 2
4 ∞ -
5 ∞ -
6 14 s
7 15 s
t ∞ -

5.3.4 Vertex 6

Now vertex 6 is the minimum priority, extract it. It can reach:

1. Vertex 3: 14 + 18 = 32

2. Vertex 5: 14 + 30 = 44

3. Vertex 7: 14 + 5 = 19

Update the priority if we get a lower value:

S = {s, 2, 6} (12)

PQ = {3, 4, 5, 7, t} (13)

priority = {32,∞, 44, 15,∞} (14)

Node Shortest Distance Previous Node
s 0 -
2 9 s
3 32 6
4 ∞ -
5 44 6
6 14 s
7 15 s
t ∞ -

5.3.5 Vertex 7

Now vertex 7 is the minimum priority, extract it. It can reach:

1. Vertex 5: 15 + 20 = 35

2. Vertex t: 15 + 44 = 59

@TSJ: sijian@umich.edu 15



Algorithm · Graphs

Update the priority if we get a lower value:

S = {s, 2, 6, 7} (15)

PQ = {3, 4, 5, t} (16)

priority = {32,∞, 35, 59} (17)

Node Shortest Distance Previous Node
s 0 -
2 9 s
3 32 6
4 ∞ -
5 35 7
6 14 s
7 15 s
t 59 7

5.3.6 Vertex 3

Now vertex 3 is the minimum priority, extract it. It can reach:

1. Vertex 5: 32 + 2 = 34

2. Vertex t: 32 + 19 = 51

Update the priority if we get a lower value:

S = {s, 2, 6, 7, 3} (18)

PQ = {4, 5, t} (19)

priority = {∞, 34, 51} (20)

Node Shortest Distance Previous Node
s 0 -
2 9 s
3 32 6
4 ∞ -
5 34 3
6 14 s
7 15 s
t 51 3

@TSJ: sijian@umich.edu 16



Algorithm · Graphs

5.3.7 Vertex 5

Now vertex 5 is the minimum priority, extract it. It can reach:

1. Vertex 4: 34 + 11 = 45

2. Vertex t: 34 + 16 = 50

Update the priority if we get a lower value:

S = {s, 2, 6, 7, 3, 5} (21)

PQ = {4, t} (22)

priority = {45, 50} (23)

Node Shortest Distance Previous Node
s 0 -
2 9 s
3 32 6
4 45 5
5 34 3
6 14 s
7 15 s
t 50 5

5.3.8 Vertex 4

Now vertex 4 is the minimum priority, extract it. It can reach:

1. Vertex 3: 45 + 6 = 51

2. Vertex t: 45 + 6 = 51

Update the priority if we get a lower value:

S = {s, 2, 6, 7, 3, 5, 4} (24)

PQ = {t} (25)

priority = {50} (26)

@TSJ: sijian@umich.edu 17



Algorithm · Graphs

Node Shortest Distance Previous Node
s 0 -
2 9 s
3 32 6
4 45 5
5 34 3
6 14 s
7 15 s
t 50 5

5.3.9 Vertex t

Now vertex t is the only one element left in the queue, extract it. Because it could
not reach any other nodes, so anything will not be updated.

5.3.10 Conclusion

Finally we have the shortest path as:

s→ 6→ 3→ 5→ t (27)

And the shortest path length is 50.

@TSJ: sijian@umich.edu 18


	Definition
	Adjacency Matrix
	Undirected Graph
	Directed Graph
	Weighted Directed Graph
	Adjacency List

	Shortest Path Problem
	Dijkstra's Algorithm
	Math Expressions
	Demo
	A
	B
	D
	E
	F
	C

	Proof

	Dijkstra's Algorithm Optimization
	Introduction to Priority Queue (PQ)
	Priority Queue Application
	Initialization
	Priority Queue
	Main Loop

	Demo
	Initialization
	Vertex s
	Vertex 2
	Vertex 6
	Vertex 7
	Vertex 3
	Vertex 5
	Vertex 4
	Vertex t
	Conclusion



