
Greedy Algorithm

1 Definition

A greedy algorithm is a simple, intuitive algorithmic approach that makes the best
or most optimal choice at each step as it attempts to find the overall optimal way to
solve the entire problem. This means that it picks the best immediate option without
considering the broader consequences and hopes that by choosing a local optimum at
each step, a global optimum will be reached.

2 Interval Scheduling Problem

2.1 Problem Definition

Assume job j starts at sj and finishes at fj. Two jobs are compatible if they don’t
overlap. The goal is to find maximum subset of mutually compatible jobs.

Figure 1: Interval Scheduling

The optimized solution is choosing next job to add to solution as the one
with earliest finish time that it is compatible with the ones already taken.

1



Algorithm · Greedy Algorithm

2.2 Interval Definition

Let the set of all intervals be:

I = {i1, i2, ..., in} (1)

where each interval ij is represented by its start and finish times (sj, fj). Without
loss of generality, assume these intervals are sorted by their finish times:

f1 ≤ f2 ≤ ... ≤ fn (2)

2.3 Solution Definition

The set of intervals selected by the greedy algorithm, sorted by their finish times is
defined as:

G = {g1, g2, ..., gk} (3)

The set of intervals in an optimal solution, also sorted by their finish times is defined
as:

O = {o1, o2, ..., om} (4)

2.4 Greedy Stays Ahead Argument

Need to prove that fgj ≤ foj for all j where 1 ≤ j ≤ min(k,m). This implies that
the j-th interval selected by the greedy algorithm finishes no later than the j-th interval
in optimal solution.

2.5 Base Case

For j = 1, because g1 is the interval with the earliest finish time, fg1 ≤ fo1

2.6 Inductive Step

1. Assume fgj ≤ foj holds for particular j

2. Consider the next interval gj+1 chosen by Greedy, then gj+1 is the interval with
the earliest finish time after gj

3. Because we know job oj+1 is compatible with oj, so we have:

foj ≤ soj+1
≤ foj+1

(5)

Therefore we have:

fgj ≤ soj+1
(6)

@TSJ: sijian@umich.edu 2



Algorithm · Greedy Algorithm

Therefore job oj+1 is compatible with gj, so it is an option for greedy algorithm.
Based on step 2, we know gj+1 already has the earliest finish time, so:

fgj+1
≤ foj+1

(7)

Figure 2: Inductive Step

2.7 Conclusion

Since fgj ≤ foj for all j, greedy algorithm always stays ahead. If optimal solu-
tion contains m intervals, then the greedy solution can contain at least m intervals.
Therefore k ≥ m, greedy is optimal.

2.8 Pseudo Code

Figure 3: Interval Scheduling Pseudo Code

@TSJ: sijian@umich.edu 3



Algorithm · Greedy Algorithm

3 Minimizing Lateness Problem

3.1 Problem Definition

Suppose single resource processes on job at a time. Assume job j requires tj units
of processing time and is due at time dj, as shown below:

Figure 4: Processing Time and Due Time

If a job j starts at time sj, then the finish time will be:

fj = sj + tj (8)

And the lateness will be expressed as:

lj = max{0, fj − dj} (9)

The final goal is to schedule all jobs to minimize maximum lateness. For
example:

Figure 5: Max Lateness Example

3.2 Algorithm

The chosen algorithm is earliest deadline first algorithm:

@TSJ: sijian@umich.edu 4



Algorithm · Greedy Algorithm

Figure 6: Earliest Deadline First Algorithm

Now we want to prove that this algorithm is the optimal solution, using exchange
argument method.

3.3 Observations

Before the start of proof, we should first analyze the problem.

3.3.1 Observation 1

There exists an optimal schedule with no idle time.

Figure 7: Observation 1

Because if an optimal schedule has idle time, we can always make it more optimal
by reducing the idle time, so the all the tasks could be finished earlier.

3.3.2 Observation 2

The earliest-deadline-first schedule has no idle time. Similarly, if idle time
exists, we can reduce it and make the schedule more optimal.

3.3.3 Observation 3

First we define inversion as a pair of jobs i and j such that di < dj, but j is
scheduled before i in a given schedule S.

@TSJ: sijian@umich.edu 5



Algorithm · Greedy Algorithm

Figure 8: Inversion Definition

Therefore if all deadlines are different, the earliest-deadline-first schedule is
the unique idle-free schedule with no inversions, because this algorithm arrange
the task based on the deadlines order.

3.3.4 Lemma

All schedules with no inversions and no idle time have the same lateness.
The possible difference is that we have several jobs with the same deadline, but we
arrange them in different ways. But all of these arrangements will give the same lateness,
which could be proven:

1. All jobs with same deadline d come in a block of consecutive jobs in any schedule
with no inversions.

2. In any reordering of these jobs, the last job of the block has the same finish time
and it is the worst finish time among the jobs in the block.

3. They all have same deadline, so latest job in the block is always last in the block
and its lateness is always f − d no matter reordering.

3.3.5 Observation 4

If an idle-free schedule has an inversion, then it has an adjacent inversion
(two inverted jobs scheduled consecutively). This could be proven by contradic-
tion.

Figure 9: Proof

1. Let i, j be a closest but not adjacent (otherwise it is proved already)
inversion (di < dj)

2. Now assume k be the element immediately to right of j

3. If dj > dk, then j, k is an adjacent inversion

4. If dj < dk, then i, k is a closer inversion, which is a contradiction.

@TSJ: sijian@umich.edu 6



Algorithm · Greedy Algorithm

3.3.6 Key Claim

Exchanging two adjacent, inverted jobs i, j reduces the number of inver-
sions by 1 but does not increase the max lateness.

Figure 10: Flip Inversion

This could also be proven:

1. Let l be the lateness before the swap, and let l′ be it afterwards.

2. For all k ̸= i, j, flipping the adjacent inversion will not affect other elements, so
l′k = lk.

3. Because we move i forwards, so we have l′i ≤ li.

4. Now if job j is late, then based on the definition we have:

l′j = f ′
j − dj (10)

Because i, j are adjacent inversion, so we have:

fi = f ′
j (11)

l′j = fi − dj (12)

Recall the assumption:
di ≤ dj (13)

Therefore we have:
l′j ≤ fi − di = li (14)

3.4 Theorem Proof

3.4.1 Summary

1. Observation 1: There exists an optimal schedule with no idle time.

2. Observation 2: The earliest-deadline-first schedule has no idle time.

3. Observation 3: The earliest-deadline-first schedule is the unique idle-free sched-
ule with no inversions, if all deadlines are different.

4. Lemma: All schedules with no inversions and no idle time have the same lateness.

@TSJ: sijian@umich.edu 7



Algorithm · Greedy Algorithm

5. Observation 4: If an idle-free schedule has an inversion, then it has an adjacent
inversion.

6. Key Claim: Exchanging two adjacent, inverted jobs i and j reduces the number
of inversions by 1 and does not increase the max lateness.

3.4.2 Proof (less formal)

Now we want to prove that there is an optimal schedule with no inversions
and no idle time.

1. There is an optimal schedule O with no idle time (Observation 1).

2. If O has an inversion then it has a consecutive inversion (Observation 4). We will
swap the consecutive inversion, and this does not increase the maximum lateness
(Key Claim)

3. We repeat these swaps until no inversion exists. We will get an optimal solution
without inversions.

4. Finally we need to show that the total number of exchange operations. For a list
of n elements, in the worst case, every pair of elements is an inversion. Then, the
first element of the list can pair with n − 1 other elements to form an inversion,
second n− 2, third n− 3 and so on. Therefore, the total cases are:

(n− 1) + (n− 2) + ...+ 1 =
n(n− 1)

2
(15)

Then, we want to prove greedy is optimal:

1. There is an optimal schedule with no idle time and no inversions.

2. Greedy has no idle time and no inversions (Observation 2, 3).

3. All schedules with no idle time and no inversions have the same lateness (Lemma)

4. Greedy has optimal lateness.

3.4.3 Exchange Argument Introduction

The idea of exchange argument is to show that you can iteratively transform any
optimal solution into the solution produced by the greedy algorithm without worsening
the cost of the optimal solution, thereby proving that the greedy solution is optimal.

The basic steps include:

1. Define your solutions: Comparing the greedy solution G to an optimal solution
O.

2. Compare Solutions: Show that if G ̸= O, then they must differ in some way.
Some classical assumptions include there is a piece of G that is not in O, or that
two elements of G that are in a different order in O.

@TSJ: sijian@umich.edu 8



Algorithm · Greedy Algorithm

3. Exchange Pieces: Show how to transform O by exchanging some piece of O for
piece of G. Then prove that by doing so, you did not worsen the score of O and
therefore have a different optimal solution.

4. Iterate: Argue that you have decreased the number of differences between G
and O by performing the exchange, and that by iterating this process for a finite
number of times you can turn O into G without impacting the quality of the
solution. Therefore, G must be optimal.

3.4.4 Proof (formal)

1. Define the solutions: Denote greedy solution as G, and an optimal solution O.
Pick the optimal solution which has no idle time (Observation 1).

2. Compare Solutions Show that if G ̸= O, then they must differ in some way.
From Observation 3, G has no inversions and no idle time.

(a) If O has no inversions: then G has the same lateness as O (Lemma)

(b) If O has inversions: move to exchange argument

3. Exchange Pieces: show that O can be gradually converted into G without
hurting the quality of O. Because O has inversions, it must have an adjacent
inversion (Observation 4). We can invert the adjacent inversion without hurting
the quality of O (Key Claim)

4. Iterate:The previous operation reduces the number of inversions by 1. There are
at most n(n−1)

2
inversions. After this, O is turned into a solution with no inversions

and no idle time, same as G. Then, from Lemma, G has the same lateness as O.
Therefore G is optimal.

4 Interval Partitioning

4.1 Problem Definition

Assume the lecture j starts at sj and finishes at fj. Then the goal is to find
minimum number of classrooms to schedule all lectures so that no two occur at the
same time in the same room.

An example is shown below (not optimal):

Figure 11: Interval Partitioning

@TSJ: sijian@umich.edu 9



Algorithm · Greedy Algorithm

4.2 Observation

First we define the depth of a set of intervals is the maximum number that pass
over any single point on the time-line. The main observation in this case is:

Number of classrooms needed ≥ depth (16)

Then we apply greedy algorithm to consider lectures in increasing order of start
time, and assign lecture to any compatible classroom. The algorithm is shown below:

Figure 12: Greedy Algorithm

And the result is shown below:

Figure 13: Greedy Algorithm Result

Here comes another important observation: Greedy algorithm never schedules
two incompatible lectures in the same classroom.

@TSJ: sijian@umich.edu 10



Algorithm · Greedy Algorithm

4.3 Proof

Figure 14: Greedy Algorithm Proof

The proof includes the following steps:

1. Define d as the number of classrooms that the greedy algorithm allocates, which
is also the index of last classroom.

2. The last classroom d is opened because we need to schedule a job, say j, that is
incompatible with all d− 1 other classrooms.

3. In each of the d − 1 classrooms, there exists a job which starts no later than
sj and ends after sj, otherwise there will be space in other classrooms for job j,
no need classroom d.

4. Thus, we have d lectures overlapping at time sj+e, which is the time point which
just passes sj.

5. Which means depth needs to be greater or equal to d.

6. Recall the previous observation, d ≥ depth.

7. Therefore we have d = depth and the greedy solution must be optimal.

5 Summary

There are three main methods to prove greedy algorithm:

1. Greedy algorithm stays ahead: Show that after each step of the greedy algo-
rithm, its solution is at least as good as any other algorithm’s. (Interval Schedul-
ing)

2. Exchange argument: Gradually transform any optimal solution to the one
found by the greedy algorithm without hurting its quality. (Minimizing Maximum
Lateness)

3. Structural:Discover a simple ”structural” bound asserting that every possible so-
lution must have a certain value. Then show that your algorithm always achieves
this bound. (Interval Partitioning)

@TSJ: sijian@umich.edu 11


	Definition
	Interval Scheduling Problem
	Problem Definition
	Interval Definition
	Solution Definition
	Greedy Stays Ahead Argument
	Base Case
	Inductive Step
	Conclusion
	Pseudo Code

	Minimizing Lateness Problem
	Problem Definition
	Algorithm
	Observations
	Observation 1
	Observation 2
	Observation 3
	Lemma
	Observation 4
	Key Claim

	Theorem Proof
	Summary
	Proof (less formal)
	Exchange Argument Introduction
	Proof (formal)


	Interval Partitioning
	Problem Definition
	Observation
	Proof

	Summary

