
NP-Complete

1 Definition

In computer science, there exist some problems whose solutions are not yet found,
the problems are divided into classes known as Complexity Classes. In complexity
theory, a Complexity Class is a set of problems with related complexity. These classes
help scientists to group problems based on how much time and space they require to
solve problems and verify the solutions. It is the branch of the theory of computation
that deals with the resources required to solve a problem. There are multiple types of
complexity classes:

1.1 P Class

The P in P class stands for Polynomial Time, it is the collection of decision
problems (problems with a ”yes” pr ”no” answer) that can be solved by a deterministic
machine in polynomial time (O(nd)). Notice that O(log n) is also polynomial time,
based on the definition.

The solution to P problems is easy to find. P is often a class of computational
problems that are solvable and tractable. Tractable means that the problems could
be solved in theory as well as in practice. The problems could be solved in theory
but not in practice are known as intractable.

1.2 NP Class

The NP in NP class stands for Non-deterministic Polynomial Time. It’s the
collection of decision problems that can be solved by a non-deterministic machine
in polynomial time. The solutions of the NP class are hard to find, but the solutions
are easy to verify. Problems of NP could be verified by a Turing machine in
polynomial time. Notice that NP includes P!

1.2.1 Non-Deterministic Machine

Based on the definition, a non-deterministic machine could be in multiple states
at once and can make arbitrary choices between different computational paths. In other
words, at any point in its computation, can branch into many possible futures. Each
state can have multiple possible transitions for a given input symbol.

The computation of a non-deterministic machine can be visualized as a tree, where
each path from the root to a leaf represents a possible sequence of choices and transi-
tions. If at least one of these paths leads to an accepting state (for decision
problems), the machine accepts the input.

1

https://www.geeksforgeeks.org/types-of-complexity-classes-p-np-conp-np-hard-and-np-complete/

Algorithm · NP-Complete

1.2.2 Turing Machine

A deterministic Turing machine (DTM) is a theoretical model of computation
where, given the current state and the symbol being read from the tape, the machine
has a single, uniquely defined transition to a next state, a symbol to write, and a
direction to move the tape head (left or right).

1.2.3 Examples

Let us consider an example to better understand the NP class. Suppose there is a
company having a total of 1000 employees having unique employee IDs. Assume that
there are 200 rooms available for them. A selection of 200 employees must be paired
together, but the CEO of the company has the data of some employees who can’t work
in the same room due to personal reasons.

This is an example of an NP problem. Since it is easy to check if the given choice
of 200 employees proposed by a coworker is satisfactory or not i.e. no pair taken from
the coworker list appears on the list given by the CEO. But generating such a list from
scratch seems to be so hard as to be completely impractical.

1.3 NP-Hard Class

An NP-hard problem is at least as hard as the hardest problem in NP and it
is a class of problems such that every problem in NP could reduce to NP-hard.
Some features include:

• Not all NP-hard problems are in NP

• If a solution for an NP-hard problem is given then it takes a long time to check
whether it is right or not

• A problem A is in NP-hard if for every problem L in NP, there exits a
polynomial time reduction from L to A

1.4 NP-Complete Class

A problem is NP-complete if it is both NP and NP-hard. NP-complete problems
are the hard problems in NP. Some features include:

• NP-complete problems are special, any problem in NP could be transformed
or reduced into NP-complete problems in polynomial time.

• If one could solve an NP-complete problem in polynomial time, then one could
also solve any NP problem in polynomial time.

@TSJ: sijian@umich.edu 2

Algorithm · NP-Complete

1.5 Interrelations

Figure 1: Complexity Classes Interrelations

Or, it could be possible that:

Figure 2: Possible NP relation

2 Reductions

2.1 Definition

A reduction from A to B is showing that we can solve A using the algorithm
that solves B, or we say problem A is easier than problem B:

A ≤ B (1)

Given two problems A, B, we say that A is polynomially reducible to B (A ≤p

B)if:

• Problem A can be reduced to problem B if there exist a function f that transforms
instances of A into instances of B such that i is a YES instance of A if and only
if f(i) is a YES instance of B

• The function f must be computable in polynomial time

@TSJ: sijian@umich.edu 3

Algorithm · NP-Complete

2.2 Implication

There are several implications of polynomial-time reductions:

• Design algorithms: if X ≤p Y and Y could be solved in polynomial time (PT),
then X could also be solved in PT.

• Establish intractability: if X ≤p Y and X cannot be solved in PT, then Y
can not be solved in PT.

• Establish equivalence: if X ≤p Y and if Y ≤p X, we can have X =p Y

• Transitivity: if X ≤p Y and Y ≤p Z, then X ≤p Z

3 Recipe

Recipe to establish NP-completeness of problem Y :

1. Step 1: Show that Y is in NP:

• Describe how a potential solution will be represented

• Describe a procedure to check whether the potential solution is a correct
solution to the problem instance, and argue that this procedure takes poly-
nomial time.

2. Step 2: Choose an NP-complete problem X.

3. Step 3: Prove that X ≤P Y (X is poly-time reducible to Y):

• Describe a procedure f that converts the inputs i of X to inputs of Y in
polynomial time.

• Show that the reduction is correct by showing that X(i) = Y ES if and only
if Y (f(i)) = Y ES

• The reason why we are reducing an existing NP-Complete problem
to the new problem is that: this means X is easier than Y , so Y is at
least as hard as NP-Complete, so Y is also NP-Complete.

4. Step 4: Justification: If X is an NP-complete problem, and Y is a problem in
NP with the property that X ≤P Y , then Y is NP-complete.

The hardest part is step 3. The recipe for this step is shown below:

• Let I1 be any instance of X.

• Transform I1 into an instance I2 of problem Y .

• Check whether this transformation takes a polynomial time.

• Suppose I1 has a solution, then prove that I2 also has a solution.

• Suppose I2 has a solution, then show that it implies that I1 has a solution.

@TSJ: sijian@umich.edu 4

Algorithm · NP-Complete

4 Classical NP-complete Problems

4.1 Boolean Satisfiability Problem (SAT)

4.1.1 Definition

SAT is the first known NP-complete problem and laid the foundation for the
theory of NP-completeness. Before explaining the definition of SAT, we first need to
introduce Conjunctive Normal Form (CNF).

CNF is a way of structuring a Boolean formula such that it is expressed as an AND
of ORs. We call AND as conjunction, and OR as disjunction. Here is an example
of CNF:

(A ∨ ¬B) ∧ (¬A ∨B ∨ C) ∧ (¬C ∨D) (2)

Some important concepts:

1. Literal: a variable or the negation of a variable. In Boolean logic, literals are the
basic building blocks of clauses. For example, a positive literal is A, and the
negative literal is ¬A

2. Clause: a disjunction (only !!!) of literals, such as (¬A ∨ B ∨ C). The
conjunctions (only !!!) of clauses will be CNF.

3. AND (∧): the result is true if both operands are true.

4. OR (∨): The result is true if at least one of the operands is true.

5. NOT (¬): The result is true if the operand is false, and vice versa.

Now, the definition of SAT will be:

• Input: A Boolean formula in CNF, where each clause can have any number of
literals.

• Problem: Determine if there is an assignment of truth values to the variables
that makes the entire formula true. This is also the definition of satisfiable.

4.1.2 Prove NP-Completeness

Recall the recipe, to prove NP-Completeness of a problem, we first need to prove
it is NP, then prove that a NP-Complete problem is polynomially reducible to this
problem. However, this problem is the first NP-Complete problem, so we need
to prove that it is also NP-Hard, to prove that it is NP-Complete.

1. SAT is in NP: A problem is in NP if a given solution can be verified in poly-
nomial time. The verification procedure is to evaluate each clause to check if
at least one literal in the clause is true under the given assignment. Because
the verification process could be done in linear time relative to the number of
clauses and the number of literals in each clause. Therefore, SAT is in NP.

@TSJ: sijian@umich.edu 5

Algorithm · NP-Complete

2. SAT is NP-Hard: To show that SAT is NP-hard, we need to demonstrate that
any problem in NP could be reduced to SAT in polynomial time. This is
achieved by Cook-Levin Theorem, Here is a brief procedure of this:

• Take any problem in NP, which can be solved by a nondeterministic Turing
machine (NTM) in polynomial time.

• Construct a Boolean formula that is satisfiable if and only if the NTM accepts
the input.

By doing this, we can now prove that SAT problem is NP-Complete.

4.2 3-SAT Problem

4.2.1 Definition

With the definition of SAT, 3-SAT problem could be simplified:

• Input: A Boolean formula in 3-CNF, where each clause has exactly three
literals.

• Problem: Determine if there is an assignment of truth values to the variables
that make the entire formula true.

4.2.2 Prove NP-Completeness

Recall the recipe, the proof includes:

1. 3-SAT is in NP: check each clause to see if at least one literal in the clause is
true under the given assignment.

2. Reduction from NP-Complete: In SAT, there are random number of literals
in one clause, so we need to transfer it into exactly three literals. There will be
two cases:

• Clauses with fewer than three literals: If a clause has only one literal
(A), then we need to add two dummy variables x and y:

A = (A ∨ x ∨ y) ∧ (A ∨ x ∨ ¬y) ∧ (A ∨ ¬x ∨ y) ∧ (A ∨ ¬x ∨ ¬y) (3)

With this construction, regardless of the values of x and y, A being true will
satisfy all four clauses. When A is false, the choice of x and y will still have
the ability to control the result, either TRUE or FALSE. Therefore, this
construction is valid, and will preserves satisfiability. Similarly, if a clause
has two literals, then we add one dummy variable x:

(A ∨B) = (A ∨B ∨ x) ∧ (A ∨B ∨ ¬x) (4)

@TSJ: sijian@umich.edu 6

Algorithm · NP-Complete

• Clauses with more than three literals: If a clause has more than three
literals, then we can break it down into multiple clauses. For example,
assume we have a clause:

Cr = (A ∨B ∨ C ∨D ∨ · · ·) = (A ∨B ∨ EXT) (5)

We can introduce a new variable x to get the new clause:

Cr′ = (A ∨B ∨ x) ∧ (¬x ∨ EXT) (6)

The same procedure can be applied repeatedly to Cr′ until there are no more
clauses with more than three literals remaining.

Both of these constructions will take linear steps with the number of literals in
one clause and the number of clauses, so the reduction is in polynomial time.

3. Prove Correctness: assume there is an instance i, and the reduction process as
f , we need to prove SAT(i) = YES (satisfiable) if and only if 3-SAT(f(i)) = YES
(satisfiable).

• If Cr satisfiable, then Cr′ satisfiable. This means:

Cr = (A ∨B ∨ EXT) = 1 (7)

And we want:

Cr′ = (A ∨B ∨ x) ∧ (¬x ∨ EXT) = 1 (8)

If either A = 1 or B = 1, then we assign x = 0:

Cr′ = (A ∨B ∨ 0) ∧ (1 ∨ EXT) = (A ∨B) ∧ (1) = 1 (9)

If A = 0 and B = 0, we can assign x = 1 (now EXT must be 1 to satisfy
Cr):

Cr′ = (A ∨B ∨ 1) ∧ (0 ∨ EXT) = (1) ∧ (EXT) = 1 (10)

• If Cr′ satisfiable, then Cr satisfiable. This means:

(A ∨B ∨ x) = 1, (¬x ∨ EXT) = 1 (11)

And we want:

Cr = (A ∨B ∨ EXT) = 1 (12)

If x = 0, then:

Cr′ = (A ∨B ∨ 0) ∧ (1 ∨ EXT) = (A ∨B) ∧ (1) = 1 (13)

therefore:

@TSJ: sijian@umich.edu 7

Algorithm · NP-Complete

(A ∨B) = 1, Cr = 1 (14)

If x = 1, then:

Cr′ = (A ∨B ∨ 1) ∧ (0 ∨ EXT) = (1) ∧ (EXT) = 1 (15)

therefore:

(EXT) = 1, Cr = 1 (16)

Therefore, we can prove that reduction is valid.

4. Justification: Because SAT is an NP-Complete problem, 3-SAT is a problem
in NP, and SAT is polynomial reducible to 3-SAT, therefore we can prove that
3-SAT is NP-Complete.

4.3 Vertex Cover Problem (VC)

Vertex cover is a classic problem in graph theory:

• Input: A graph G = (V,E) and an integer k

• Problem: Determine whether there exists a subset V ′ ⊆ V of size at most k
such that every edge in E is incident (connected) to at least one vertex in V ′.
In other words, we need to find a set of vertices such that every edge in the
graph has at least one endpoint in this set, and the size of this set is as
small as possible.

4.4 Traveling Salesman Problem (TSP)

• Inputs:

– A set of cities.

– A distance matrix or a function that gives the distance between each pair of
cities.

• Problem: Given a list of cities, distances between each pair of cities, and a
number D, determine if there exists a route that visits each city exactly once,
returns to the origin city, and has a total distance less than or equal to D.

4.5 Knapsack Problem

• Inputs:

– A set of items X, nonnegative weights wi, nonnegative values vi.

– A weight limit W , and a target value V .

@TSJ: sijian@umich.edu 8

Algorithm · NP-Complete

• Problem: Is there a subset S ⊆ X such that:∑
i∈S

wi ≤ W (17)

∑
i∈S

vi ≥ V (18)

4.6 Hamiltonian Cycle Problem

• Input: A graph G = (V,E), where V is the set of vertices and E is the set of
edges.

• Problem: Determine if there exists a cycle that visits each vertex exactly once
and returns to the starting vertex.

4.7 Hamiltonian Path Problem

• Input: A graph G = (V,E), where V is the set of vertices and E is the set of
edges.

• Problem: Determine if there exists a path that visits each vertex exactly once?

4.8 Clique Problem

• Inputs:

– A graph G = (V,E)

– A positive integer k

• Problem: Determine if there exists a subset of vertices V ′ ⊆ V such that every
pair of vertices in V ′ is connected by an edge, and the size of V ′ is at least k.

4.9 Graph Coloring Problem

• Inputs:

– A graph G = (V,E)

– A number of colors k

• Problem: Determine if it is possible to color the vertices of the graph using at
most k colors such that no two adjacent vertices have the same color.

@TSJ: sijian@umich.edu 9

Algorithm · NP-Complete

4.10 Independent Set Problem

• Inputs:

– A graph G = (V,E), where V is the set of vertices and E is the set of edges

– A positive integer k

• Problem: Determine if there exists an independent set of size at least k. An
independent set is a subset of vertices I ⊆ V such that no two vertices in I are
adjacent. (There is no edge between any pair of vertices in I)

4.11 Set Cover Problem

• Inputs:

– A set U of elements

– A collection S1, S2, · · · , Sm of subsets of U

– An integer k

• Problem: Does there exist a collection of at most k of these sets whose union is
equal to U?

4.12 Subset Sum Problem

• Inputs:

– A set of integers S = {a1, a2, ..., an}
– A target integer T

• Problem: Does there exist a subset S ′ ⊆ S such that the sum of the elements in
S ′ is equal to T? Formally, is there a subset S ′ of S such that:∑

ai∈S′

ai = T (19)

4.13 Hitting Set Problem

• Inputs:

– A finite set U (called the universe).

– A collection S = {S1, S2, . . . , Sm} of subsets of U .

– An integer k.

• Problem: Does there exist a subset H ⊆ U with |H| ≤ k such that H intersects
(or ”hits”) every subset in S? Formally, is there a subset H ⊆ U with |H| ≤ k
such that:

H ∩ Si ̸= ∅ for all i = 1, 2, . . . ,m? (20)

@TSJ: sijian@umich.edu 10

Algorithm · NP-Complete

5 Summary

Some key words:

1. Sum of sth. equal/at least/at most: Subset sum.

2. At most k: Set cover, vertex cover.

3. At least one: Vertex cover.

4. At least k: Independent set.

@TSJ: sijian@umich.edu 11

	Definition
	P Class
	NP Class
	Non-Deterministic Machine
	Turing Machine
	Examples

	NP-Hard Class
	NP-Complete Class
	Interrelations

	Reductions
	Definition
	Implication

	Recipe
	Classical NP-complete Problems
	Boolean Satisfiability Problem (SAT)
	Definition
	Prove NP-Completeness

	3-SAT Problem
	Definition
	Prove NP-Completeness

	Vertex Cover Problem (VC)
	Traveling Salesman Problem (TSP)
	Knapsack Problem
	Hamiltonian Cycle Problem
	Hamiltonian Path Problem
	Clique Problem
	Graph Coloring Problem
	Independent Set Problem
	Set Cover Problem
	Subset Sum Problem
	Hitting Set Problem

	Summary

