
Dynamic Programming Quals Problems

Sijian Tan

1 Trick-or-treating (HW4)

Your nephew is going trick-or-treating to n houses along a street where each house
has a limited number of candies. For any house i, if the residents see a trick-or-treater
picking candies from any neighbouring house in the radius of two houses, they will not
open the door for that person. For example, consider a row of houses A,B,C,D,E,F. If
you take candies from house D, you cannot take candies from houses B,C and E,F.

Now given an array T , where T (i) represents the number of candies you can get from
house i, please design a dynamic programming algorithm (DP) to help your nephew
determine the maximum number of treats he can get.

1. Define your subproblem, and write the recurrence relation including the base case.

2. Write the bottom-up pseudocode.

3. Analyze time and space complexity.

1.1 Strategy

The key of this problem is that at each house, we either visit the house or move to
the next one depending which way we can get max number of treats. If we choose to
visit, then we need get rid of the neighbours of this house. If not, we could just use the
max number from last house.

1.2 Recurrence Relation

Subproblem: Define OPT (i) as the max total number of candies we can get from
house 0 to i.

Recurrence relation could be expressed as:

OPT (i) = max{OPT (i− 1), OPT (i− 2), OPT (i− 3) + T (i)} (1)

For the first three houses, we have several base cases:

OPT (0) = T (0) (2)

OPT (1) = max{T (0), T (1)} (3)

OPT (2) = max{T (0), T (1), T (2)} (4)

1



Algorithm · Dynamic Programming Quals Problems

1.3 Bottom-up

Algorithm 1 Best Candies (Bottom-up)

1: function BestCandies(T )
2: n← length(T )
3:

4: Create an array OPT of size n
5: OPT [0]← T [0]
6: OPT [1]← max(T [0], T [1])
7: OPT [2]← max(T [0], T [1], T [2])
8:

9: for i← 3 to n− 1 do
10: OPT [i]← max(OPT [i− 1], OPT [i− 2], T [i] +OPT [i− 3])
11: end for
12: return OPT [n− 1]
13: end function

1.4 Top-down

Algorithm 2 Best Candies (Top-down)

1: function BestCandies(T )
2: n← length(T )
3: OPT = [−float(’inf’)] ∗ n
4:

5: function compute opt(T, i, OPT)
6: if i < 0 then
7: return 0
8: end if
9: if OPT [i]! = −float(’inf’) then

10: return OPT [i]
11: end if
12: if i == 0 then
13: OPT [i] = T [0]
14: else if i == 1 then
15: OPT [i] = max{T [0], T [1]}
16: else if i == 2 then
17: OPT [i] = max{T [0], T [1], T [2]}
18: else
19: OPT [i] = max{OPT [i− 1], OPT [i− 2], T [i] +OPT [i− 3]}
20: end if
21: return OPT [i]
22: end function
23:

24: return compute opt[T, n− 1, OPT ]
25: end function

@TSJ: stan43@gatech.edu 2



Algorithm · Dynamic Programming Quals Problems

1.5 Backtracing

Algorithm 3 Best Candies Backtracing

1: function Backtracing(n, T, OPT)
2: i = n− 1
3:

4: while i ≥ 0 do
5:

6: if i = 0 then
7: print 0
8: return
9: end if

10:

11: if i = 1 then
12: if max(OPT [0], OPT [1]) = OPT [0] then
13: print 0
14: else
15: print 1
16: end if
17: return
18: end if
19:

20: if i = 2 then
21: if max(OPT [0], OPT [1], OPT [2]) = OPT [0] then
22: print 0
23: else if max(OPT [0], OPT [1], OPT [2]) = OPT [1] then
24: print 1
25: else
26: print 2
27: end if
28: return
29: end if
30:

31: if T [i] +OPT [i− 3] = max then
32: print i
33: i = i− 3
34: else if OPT [i− 2] = max then
35: i = i− 2
36: else
37: i = i− 1
38: end if
39:

40: end while
41:

42: end function

@TSJ: stan43@gatech.edu 3



Algorithm · Dynamic Programming Quals Problems

1.6 Complexity Analysis

For the time complexity, we need to fill the OPT array of size n once, and each
OPT [i] computation is done in constant time, so it is O(n).

For the space complexity, we use 1-D array OPT of size n to store the results at
each step, so it is also O(n).

2 Water Supply Schedule (Spring 2024)

Suppose you are choosing a water supplier for your house. For each of the next n
weeks, you will need si tons of water, which have to be supplied by a water supplier.
Each week’s water supply can be provided by only one of two water companies, A or
B.

• Company A charges a fixed rate r per ton (so it costs r × si to provide a week’s
water demand si)

• Company B makes contracts for a fixed cost c per week, no matter how many
tons are ordered. However, contracts with company B must be made in blocks of
four consecutive weeks at a time.

A schedule, for your house, is a choice of water supply company (A or B) for each
of the n weeks, with the restriction that company B, whenever it is chosen, must be
chosen for blocks of four contiguous weeks at a time. The cost of the schedule is the
total amount paid to companies A and B, according to the description above. Design
a dynamic programming algorithm that takes a sequence of water values s1, s2, · · · , sn
and returns a schedule of minimum cost.

• Give the recurrence relations (do not forget the base cases).

• Give the pseudocode of the top-down implementation.

• Analyze time and space complexity.

2.1 Strategy

The key of this problem it that at each week, we either choose company A or B. For
choosing A, it is easy, simply just add the cost to the last week cost, but choosing B is
complex. The cases will be different with this week’s position in a four-week cycle.

2.2 Recurrence Relation

Subproblem: Define OPT [i] as the minimum cost we could reach at week i.
The recurrence relation will be:

OPT (i) = min



OPT [i− 1] + r · si
OPT [i− 1] + c

OPT [i− 2] + 2c

OPT [i− 3] + 3c

OPT [i− 4] + 4c

(5)

@TSJ: stan43@gatech.edu 4



Algorithm · Dynamic Programming Quals Problems

And the base cases will be:

OPT [0] = 0 (6)

OPT [1] = min{rs1, c} (7)

OPT [2] = min{OPT [1] + rs2, OPT [1] + c, 2c} (8)

OPT [3] = min{OPT [2] + rs3, OPT [2] + c, OPT [1] + 2c, 3c} (9)

2.3 Complexity Analysis

Both time and space complexities are O(n).

3 Climb Step (Fall 2023)

You are given an integer array cost, where cost[i] is the cost of the i-th step on
a staircase. Once you pay the cost, you can either climb one step or two steps. Design
a dynamic programming algorithm which finds (i) the minimum cost to reach the top
floor and (ii) the sequence of steps to achieve that minimum.

1. Example 1: if input is cost = [10, 15, 20], then the output will be:

• Minimum cost = 25

• sequence of steps = [0, 1]

2. Example 2: if input is cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1], then the output will
be:

• Minimum cost = 6

• sequence of steps = [0, 2, 4, 6, 7, 9]

You are required to provide the recurrence relation and write a pseudocode.

3.1 Strategy

The key of this problem is that at each step i, we either finish this step by taking one
step, costing cost[i], or finish this step by i− 1 step with two steps, costing cost[i− 1].

@TSJ: stan43@gatech.edu 5



Algorithm · Dynamic Programming Quals Problems

3.2 Recurrence Relation

Subproblem: Define OPT (i) as the minimum cost to reach step i (not finish this
step, just arrive this step).

Recurrence relation could be expressed as:

OPT (i) = min{OPT (i− 1) + cost[i], OPT (i− 2) + cost[i− 1]} (10)

The basic case will be:

OPT [0] = 0 (11)

3.3 Complexity Analysis

Both the time and space complexities are O(n).

4 States and Electoral Votes (2D, Spring 2023)

This problem is to determine the set of states with the smallest total population
that can provide the votes to win the election.

Formally, the problem is: We are given a list of states {1, . . . , n} where each state i
has population pi, and vi, which is the number of electoral votes for state i. All electoral
votes of a state go to a single candidate. The overall winning candidate is the one who
receives at least V electoral votes, where

V =

(∑
i

vi

)
/2 + 1.

Our goal is to find a set of states S that minimizes the value of∑
i∈S

pi

subject to the constraint that ∑
i∈S

vi ≥ V.

Please design a dynamic programming algorithm for this problem. Define the sub-
problem, give the recurrence relations, and analyze the time and space complexity of
your algorithm. Remember to include steps to output the optimal set of states (you do
not need to output all the optimal solutions if there are more than one).

4.1 Strategy

In this problem, there are two constraints. The first one is that we want to minimize
the number of population of total selected states, this could be done by the normal 1D
recurrence relation. The other one is that we need to make sure the total votes pass
V . For this kind of problem, it is better to start from V and keep reducing the
amount. The recurrence relation is either we choose a state i or not.

@TSJ: stan43@gatech.edu 6



Algorithm · Dynamic Programming Quals Problems

4.2 Recurrence Relation

Subproblem: Define OPT [i][j] to be the minimum population required to get j
votes.

Recurrence relation could be expressed as:

OPT [i][j] = min{OPT [i− 1][j], OPT [i− 1][j − vi] + pi} (12)

For the base case, we initialize OPT [i][0] = 0 for all i because zero electoral votes
require zero population, and all other OPT [i][j] = ∞, because initially they are un-
reachable. Notice that in this problem, we assume there is a solution just satisfy the
votes requirement.

@TSJ: stan43@gatech.edu 7



Algorithm · Dynamic Programming Quals Problems

4.3 Top-down, Backtracing

Algorithm 4 States and Votes (Top-down)

1: function min population to win(s, p, v)
2: n← length(p)
3: V = sum(v)//2 + 1
4: Initialize a n× V memoization table (memo), with all elements as None
5: function OPT(i,j)
6: if j = 0 then
7: return 0 ▷ Base case: if j = 0, no votes needed, population is 0
8: end if
9: if i = 0 then
10: return ∞ ▷ If we have considered all states and still need votes, return
∞ (impossible)

11: end if
12:

13: if memo[i][j] is not None then
14: return memo[i][j] ▷ If the value is already computed, just return it
15: end if
16:

17: option1 = OPT (i− 1, j) ▷ Do not include state i
18: if j ≥ v[i] then
19: option2 = OPT (i− 1, j − v[i]) + p[i] ▷ Include state i
20: else
21: option2 = float(’inf’)
22: end if
23:

24: memo[i][j] = min(option1, option2)
25: return memo[i][j]
26: end function
27:

28: min population = OPT (n, V )
29:

30: S = [] ▷ Initialize a optimal set of states
31: i, j = n, V
32: while j > 0 and i > 0 do
33: if memo[i][j] == memo[i− 1][j] then
34: i = i− 1
35: else
36: S.append(s[i])
37: j = j − v[i]
38: i = i− 1
39: end if
40: end while
41: return min population, S
42: end function

@TSJ: stan43@gatech.edu 8



Algorithm · Dynamic Programming Quals Problems

4.4 Bottom-up, Backtracing

Algorithm 5 States and Votes (Bottom-up)

1: function min population to win(s, p, v)
2: n← length(p)
3: V = sum(v)//2 + 1
4: Initialize the (n× V ) DP table (OPT )
5:

6: for i← 0 to n do
7: for j ← 0 to n do
8: if j == 0 then
9: OPT [i][j] = 0

10: else
11: OPT [i][j] =∞
12: end if
13: end for
14: end for
15:

16: for i← 0 to n do
17: for j ← 0 to V do
18: if j ≥ v[i] then
19: OPT [i][j] = min{OPT [i− 1][j], OPT [i− 1][j − v[i]] + p[i]}
20: else
21: OPT [i][j] = OPT [i− 1][j]
22: end if
23: end for
24: end for
25:

26: min population = OPT [n][V ]
27:

28: S = [] ▷ Initialize a optimal set of states
29: i, j = n, V
30:

31: while j > 0 and i > 0 do
32: if OPT [i][j] == OPT [i− 1][j] then
33: i = i− 1
34: else
35: S.append(s[i])
36: j = j − v[i]
37: i = i− 1
38: end if
39: end while
40:

41: return min population, S
42: end function

@TSJ: stan43@gatech.edu 9



Algorithm · Dynamic Programming Quals Problems

4.5 Complexity Analysis

Both the time complexity and space complexity are O(nV ).

5 Merge Two Sequences (2D, Spring 2023)

Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be two genomic sequences repre-
sented by strings of letters and C[i, j] be the cost function defined on pairs of letters,
one from X and one from Y .

Our task is to merge these two sequences to create a new genomic sequence Z and
we need to find the cheapest merge of X and Y , while maintaining the order of letters
from both X and Y . Therefore, for instance, if X = {a, b, a, c} and Y = {d, a, e, b},
then Z = {a, d, a, b, a, e, c, b} and Z = {a, d, a, e, b, b, a, c} are valid merges, but Z =
{b, a, e, c, d, a, b} is not because e from the second sequence is used before d and a.

Total cost of the merge is the sum of the merging costs of the adjacent letters from
different sequences. So if Z includes xi and xi+1 as consecutive letters, there is no cost,
but if Z has xsyt as consecutive letters, then there is a cost C[s, t] and it should be
added to the total cost of the merge. Note: You can assume that the cost function is
symmetric.

Please design a dynamic programming algorithm to find the minimum cost of merg-
ing X and Y . Please define the subproblem(s) and give the recurrence relations. An-
alyze the time and space complexity of your algorithm. Backtracking step and pseu-
docode are not required.

Figure 1: Merge Sequences

5.1 Strategy

The key of this problem is to find the best place to cross the sequences,
because at the same sequence there will be no cost. To address this, we need a 2D
recurrence relation.

@TSJ: stan43@gatech.edu 10



Algorithm · Dynamic Programming Quals Problems

5.2 Recurrence Relation

Subproblem: Define OPT (i, j) as the minimum cost of merging the elements
before (and include) xi and yj (both using 0-based).

Recurrence relation could be expressed as:

OPT (i, j) = min

{
OPT (i− 1, j) + C[i, j] Add xi from yj

OPT (i, j − 1) + C[i, j] Add yj from xi

(13)

5.3 Complexity Analysis

Both time complexity and space complexity are O(mn).

6 String Reading (Segmentation, Spring 2024)

Many languages (including Chinese and Japanese) are written without spaces be-
tween words. You are given text in such a language, and you are required to design an
algorithm to infer likely boundaries between consecutive words in the text. If English
were written without spaces, the analogous problem would consist of taking a string
like “meeteateight” and deciding that the best segmentation is “meet at eight” (and
not “me et at eight”, or “meet ate ight”, or any of a huge number of possibilities).

To solve the problem, you are given a function Quality() that takes any string
of letters and returns a number that indicates the quality of the word formed by the
string. A high number indicates that the string resembles a word in the language (e.g.
“meet”), whereas a low number means that the string does not resemble a word (e.g.
“eeta”). The total quality of a segmentation is determined by adding up the qualities
of each of its words.

Design a bottom-up dynamic programming algorithm that takes a string y and
computes a segmentation of maximum total quality. You are required to provide the
recurrence relation, pseudocode and running time analysis (you can treat the call to
Quality as a single computational step, O(1)).

6.1 Strategy

In this problem, we need to examine all the combinations possible to find the optimal
solution. This is usually done by segmentation method, which is introducing a new
variable to loop through the existing index.

6.2 Recurrence Relation

Subproblem: Define OPT [i] be the maximum quality of segmentation for the
prefix of the string y of length i.

Recurrence relation could be expressed as:

OPT [i] = max0≤j≤i(OPT [j] +Quality(y[j + 1 : i])) (14)

Because an empty string has zero quality, so the base case will be:

@TSJ: stan43@gatech.edu 11



Algorithm · Dynamic Programming Quals Problems

OPT [0] = 0 (15)

6.3 Bottom-up

Algorithm 6 String Reading (Bottom-up)

1: function seg max quality(y)
2: n← length(y)
3: Initialize OPT as a (1× (n+ 1)) array
4: OPT [0] = 0
5:

6: for i← 1 to n do
7: max quality = float(’inf’)
8: for j ← 0 to i do
9: max quality = max(max quality, OPT [j] +Quality(y[j + 1 : i]))

10: end for
11: end for
12:

13: return OPT [n]
14: end function

6.4 Top-down

Algorithm 7 String Reading (Top-down)

1: function seg max quality(y)
2: n← length(y)
3: Initialize OPT as a (1× (n+ 1)) array, assign all the values as −1
4: OPT [0] = 0
5:

6: function compute max quality(i)
7: if OPT [i]! = −1 then
8: return OPT [i]
9: end if

10: max quality = float(’-inf’)
11:

12: for j ← 0 to n do
13: max quality = max(max quality, OPT [j] +Quality(y[j + 1 : i]))
14: end for
15:

16: OPT [i] = max quality
17: return OPT [i]
18: end function
19:

20: return compute max quality(n)
21: end function

@TSJ: stan43@gatech.edu 12



Algorithm · Dynamic Programming Quals Problems

6.5 Complexity Analysis

The time complexity of this problem is O(n2) because there is a nested loop. The
space complexity of this problem is O(n), we only need a 1D array.

7 Bookshelf (Segmentation, Fall 2023)

You are given n books, b1, b2, . . . , bn that need to be arranged into a bookshelf. The
books are already sorted by their indices. Each book bi has thickness ti and height hi.
The books must be arranged in the given order of their indices, from the lowest level to
the highest level of the bookshelf. The bookshelf has a total width of L, and the height
of each level on the bookshelf can be adjusted.

The aim is to minimize the total space usage of the n books, defined as the sum of
the heights of the highest book on each level, multiplied by the bookshelf width L. An
illustration is shown below (the figure may not show an optimal solution):

Example: we have three books b1, b2, b3. The thickness values are: t1 = 1, t2 = 1
and t3 = 1. The heights of the books are: h1 = 1, h2 = 2, h3 = 3. The width of
bookshelf L = 2. The optimal solution is to put b1 on level 1 and put b2 and b3 on level
2, which results in a total space usage of 8.

Please design a dynamic programming algorithm to find the minimum total space
usage of the n books. Please define the subproblem(s) and give the recurrence rela-
tions. Analyze the time and space complexity of your algorithm. Backtracing step and
pseudocode are not required.

Figure 2: Bookshelf Problem

@TSJ: stan43@gatech.edu 13



Algorithm · Dynamic Programming Quals Problems

7.1 Strategy

This problem includes many situations. When we decide either we take next book
into the same level, or put it to the next level with other previous books, we also need
to consider the length constraint. However, all of these are overthinking. We need to
use dynamic programming to simplify the problem, utilizing segmentation method.

7.2 Recurrence Relation

To define the recurrence relation, we need to consider how to place ith book and the
books before it. Specifically, we need to determine where the last level starts.

For each book, consider placing it on a new level or adding it to the current level.
For a new level, we need to consider the total thickness of books up to i not exceeding
L.

Now let’s iterate each possible starting point of the last level, denoted by j (j
ranges from 1 to i). The height of the last level will be the maximum height among
the books from j to i.

Subproblem: Define OPT [i] as the minimum space usage for the first i books.
Recurrence relation could be expressed as:

OPT [i] = min1≤j≤i(OPT [j − 1] + max(h[j], h[j + 1], · · · , h[i])× L) (16)

This equation works if t[j] + t[j + 1] + · · · + t[i] ≤ L. Here, the base case will be
OPT [0] = 0.

7.3 Complexity Analysis

The time complexity will be O(n2), because there is a nested loop. The space
complexity will be O(n), because we only use a 1D array.

8 Longest Subsequence (Fall 2022)

You are given a list of distinct numbers a1, a2, . . . , an. Please design a dynamic
programming algorithm which finds the longest subsequence of numbers where the
numbers are strictly increasing from smaller indices to larger indices. A subsequence
means a subset of numbers from the original list where the relative positions of numbers
should be maintained but the indices need not be consecutive. That is, in subsequence
ai1 , ai2 , . . . , aim , we have i1 < i2 < · · · < im.

For example, given a list of numbers {82, 77, 65, 89, 83, 68, 88, 71, 91}, one optimal
solution is {77, 83, 88, 91}.

Please describe the algorithm clearly (you may give the pseudocode), give the re-
currence relations, and analyze the time and space complexity of your algorithm. Re-
member to include steps to output the optimal subsequence (you do not need to output
all the optimal solutions if there are more than one.)

@TSJ: stan43@gatech.edu 14



Algorithm · Dynamic Programming Quals Problems

8.1 Strategy

In this problem, it is similar with finding the compatible combinations and excluding
the incompatible ones. But in this case, we need to examine all the possible cases.
Notice that in the recurrence relation we could actually state the required conditions,
without actually implementing them into the loop.

8.2 Recurrence Relation

Subproblem: Define OPT [i] be the length of the longest subsequence that ends
with the element a[i].

Recurrence relation could be expressed as:

OPT [i] = max0≤j≤i(OPT [j] + 1, OPT [i− 1]) if a[j] < a[i] (17)

Because each element is a subsequence of length 1 by itself, so OPT [i] = 1 initially
for all i.

8.3 Bottom-up, Backtracing

Algorithm 8 Longest Subsequence (Bottom-up)

1: function longest subsequence(a)
2: n← length(a)
3: OPT = [1] ∗ n
4: prev = [−1] ∗ n
5:

6: for i← 1 to n do
7: for j ← 0 to n do
8: if a[j] < a[i] and OPT [i] < OPT [j] + 1 then
9: OPT [i] = OPT [j] + 1
10: prev[i] = j
11: end if
12: end for
13: end for
14: max length = max(OPT )
15: index = OPT.index(max length)
16: lis = []
17: while index! = −1 do
18: lis.append(a[index])
19: index = prev[index]
20: end while
21: return lis
22: end function

@TSJ: stan43@gatech.edu 15



Algorithm · Dynamic Programming Quals Problems

8.4 Complexity Analysis

The time complexity of this problem is O(n2), because there is a nested loop. The
space complexity of this problem is O(n), because we only use a 1D array.

9 Meal Delivery (Fall 2022)

As the new semester starts, George is making a plan for ordering meal deliveries
from a restaurant for the entire semester. For each week, George has two choices: either
skip the week or order a meal for the entire week. Since the restaurant shares the menu
of each week, George can give a tasty score to the menu of each week depending on how
much he likes the food. Suppose there are n weeks, the tasty scores are x1, x2, . . . , xn,
where each score is an integer, and can be positive, 0, or negative.

Since the restaurant encourages ordering of consecutive weeks, there can be penalties
for skipping weeks:

• If George skips one week, there is no penalty.

• If George skips two or three consecutive weeks, there will be a penalty of 20 points.

• Skipping for four weeks or more than four weeks is not allowed. This can be
considered as a penalty of ∞ points.

The overall happiness score of the semester is the sum of all the tasty scores of
the weeks George decides to order delivery, minus the corresponding penalty for the
weeks that are skipped. For example, if there are 5 weeks, and the tasty scores are
{10,−10,−5, 15, 6}, and the plan for the 5 weeks is {order, skip, skip, order, order},
the overall happiness score is 10− 20 + 15 + 6 = 11.

Please design a dynamic programming algorithm to find the weekly plan for George
that maximizes the overall happiness score of the semester. Please describe the algo-
rithm clearly (you may give the pseudocode), give the recurrence relations, and analyze
the time and space complexity of your algorithm. Remember to include steps to output
the optimal weekly plan.

9.1 Strategy

This problem is straight forward. We need the determine the week i is better if we
order or skip, and also how many weeks to skip.

9.2 Recurrence relation

Subproblem: Define OPT [i] as the maximum happiness score we can get until
week i.

Recurrence relation could be expressed as:

OPT (i) = max


OPT [i− 1]

OPT [i− 1] + xi

OPT [i− 2]− 20

OPT [i− 3]− 20

(18)

@TSJ: stan43@gatech.edu 16



Algorithm · Dynamic Programming Quals Problems

The base cases include many situations:

OPT [0] = 0 (19)

OPT [1] = max{OPT [0], OPT [0] + x1} (20)

OPT [2] = max{OPT [1], OPT [1] + x2, OPT [0]− 20} (21)

9.3 Pseudocode

Similar with the maximum candies case.

9.4 Complexity Analysis

The space complexity is O(n), and the time complexity is O(n)

10 Cut Points (Spring 2022)

Let A be the set of all integers in the range of 1 to n. For each pair of numbers in A,
denoted as (i, j), where 1 ≤ i ≤ j ≤ n, a cost function C[i, j] > 0 is defined and given.
The task is to find an increasing sequence of cutpoints i1, i2, . . . , ik ∈ {1, 2, . . . , n − 1}
to minimize the total cost

∑k
t=0 C[it + 1, it+1], where i0 = 0 and ik+1 = n.

In other words, you need to partition the sequence {1, 2, . . . , n} into k+1 segments,
where the tth segment ends with number it, and you want to find the best way of
partitioning such that the total cost is minimized. Note that k is not fixed and it
depends on the solution you find.

Explain a Dynamic Programming algorithm to find the minimum cost of the seg-
mentation and provide the recurrence (including the base case(s)). Analyze the time
and space complexity.

10.1 Strategy

This problem is a classical segmentation problem. It seems like multiple cut points
will generate multiple segments, make the situation very complex. But actually the
DP will take care of it, starting from the smallest segment and consider each segment
combination. The recurrence relation is similar with that of Quality problem.

10.2 Recurrence Relation

Subproblem: We define OPT [i] as the minimum cost we could reach for the inte-
gers in range of 1 to i.

Recurrence relation could be expressed as:

OPT [i] = min1≤j≤i(OPT [j] + C[j, i]) (22)

The base case will be:

@TSJ: stan43@gatech.edu 17



Algorithm · Dynamic Programming Quals Problems

OPT [1] = 0 (23)

10.3 Complexity Analysis

The time complexity will be O(n2), because there is a nested loop. The space
complexity will be O(n) because we are using 1D array.

11 Difficult Assignment (Spring 2022)

You are taking a course this semester which has n weeks. Each week, there are
two assignments released, an “easy” assignment and a “difficult” assignment. You can
choose from one of them but you cannot choose both during the same week. At week i,
accomplishing the easy assignment will earn you ei points, and the difficult assignment
will earn you di points. However, if you plan to do a difficult assignment in week i, you
must do no assignment in week i − 1, because you will need the time of week i − 1 to
study and prepare for the difficult assignment in week i. On the other hand, you can
take an easy assignment in week i no matter what assignment you do in week i− 1.

Given a sequence of ei values for the points one can gain through the easy assign-
ments, and a sequence of di values for the points one can gain through the difficult
assignments, 1 ≤ i ≤ n, you need to come up with a plan for each week, in order to
maximize the total points you gain for the semester. Note that when you devote a week
to work on an assignment you always get full credits, that is, getting partial credits is
not a scenario to consider. Therefore, for each week i, there are three choices: 1) take
an easy assignment and earn ei points; 2) take a difficult assignment and earn di points;
3) take no assignment and earn 0 points.

Please design a dynamic programming algorithm that finds the optimal total points
and the optimal weekly plan. Please describe the algorithm clearly (you may give the
pseudocode), give the recurrence relations, and analyze the time and space complexity
of your algorithm.

11.1 Strategy

Classical incompatible question.

11.2 Recurrence Relation

Subproblem: We define OPT [i] as the maximum total points we could get until
week i.

Recurrence relation could be expressed as:

OPT (i) = max

{
OPT [i− 1] + ei

OPT [i− 2] + di
(24)

The base case will be:

OPT [0] = 0 (25)

@TSJ: stan43@gatech.edu 18



Algorithm · Dynamic Programming Quals Problems

OPT [1] = e1 (26)

11.3 Complexity Analysis

Both the time and space complexities are O(n).

12 Courses and Hours (Fall 2020)

Suppose you are taking n courses, each with a project that has to be done. Each
project will be graded on the following scale: It will be assigned an integer number on
a scale of 1 to g > 1, higher numbers being better grades. Your goal is to maximize
your average grade on the n projects.

You have a total of H > n hours in which to work on the n projects cumulatively,
and you want to decide how to divide up this time. For simplicity, assume H is a
positive integer, and you will spend an integer number of hours on each project.

To figure out how to best divide up your time, you have come up with a set of
functions {fi : i = 1, 2, . . . , n} to estimate the grade you will get for each project given
that you spend h hours on that project. That is, if you spend h ≤ H hours on the
project for course i, you will get a grade of fi(h). You may assume that the functions
fi are non-decreasing: if h < h′, then fi(h) ≤ fi(h

′).
So the problem is: Given these functions {fi}, decide how many hours to spend on

each project (in integer values only) so that your total grade, as computed according to
the fi, is as large as possible. The running time of your algorithm should be polynomial
in n and H. Please describe the algorithm clearly (you may give the pseudocode), give
the recurrence relations, and analyze the time and space complexity of your algorithm.

12.1 Strategy

This problem has two constraints, the first one is to make sure the total hours
smaller than H, and we want to maximize the points we could get. This is similar with
the votes problem, we need a 2D DP.

12.2 Recurrence Relation

Subproblem: We define OPT [i][h] as the maximum points up to course i, with
remaining available hours as h.

Recurrence relation could be expressed as:

OPT [i][h] = max0≤x≤h(OPT [i− 1][h− x] + fi(x)) (27)

Here 0 ≤ i ≤ n, and 0 ≤ h ≤ H. The base case will be:

OPT [0][0] = 0, OPT [i][0] = 0, OPT [0][h] = 0 (28)

@TSJ: stan43@gatech.edu 19



Algorithm · Dynamic Programming Quals Problems

12.3 Complexity Analysis

Notice that this recurrence relation includes three loops (i, h, x), therefore
the time complexity will be O(nH2). And because we are using 2D array, so the space
complexity will be O(nH).

13 Red, Black Color (Fall 2019)

Consider the following game. You are given a sequence of n positive numbers
(a1, a2, . . . , an). Initially, they are all colored black. At each move, you choose a black
number ak and color it and its immediate neighbors (if any) red (the immediate neigh-
bors are the elements ak−1, ak+1). You get ak points for this move. The game ends
when all numbers are colored red. The goal is to get as many points as possible.

(a) Describe a greedy algorithm for this problem. Verify that it does not always
maximize the number of points and give a tight approximation ratio (i.e., provide
a family of instances where the greedy algorithm returns solutions that reach this
bound, and an informal proof that, on any instance, the solution returned by the
greedy algorithm will not exceed that bound).

(b) Describe and analyze an efficient dynamic programming algorithm for this prob-
lem that returns optimal solutions. (Linear time is possible.)

13.1 Strategy

The DP problem is just a simple compatible question. For the Greedy part, notice
that the sequence is not sorted, so this problem is more like a Knapsack problem, we
want to choose the ball with largest points first.

13.2 Greedy

The Greedy algorithm is shown below:

1. At each step, choose the largest available number ak that is still black.

2. Color ak and its immediate neighbors (if any) red.

3. Add ak to the total points, repeat until all numbers are colored red.

13.3 Recurrence Relation

Subproblem: We define OPT [k] as the maximum points we can get up to the ball
k.

Recurrence relation could be expressed as:

OPT [k] = max{OPT [k − 2] + ak, OPT [k − 1]} (29)

Here 1 ≤ k ≤ n. The base case will be:

@TSJ: stan43@gatech.edu 20



Algorithm · Dynamic Programming Quals Problems

OPT [0] = 0 (30)

OPT [1] = a1 (31)

13.4 Complexity Analysis

Both the time and space complexities are O(n).

14 Minimize Length (Hardest, Fall 2020, Fall 2019,

HW 4)

You are given a sorted set of points P = (P1, P2, . . . , Pn) on a line. Given a constant
k, show how to select a subset of k − 1 of these points, say (still in sorted order)
(Pj1 , . . . , Pjk−1

), so as to partition the segment from P1 to Pn into k pieces that are as
close to equal in length as possible. Specifically, writing L = (Pn − P1)/k, we want to
minimize the square error

(Pj1 − P1 − L)2 +
k−2∑
i=1

(Pji+1
− Pji − L)2 + (Pn − Pjk−1

− L)2

Describe and analyze an algorithm for this problem that runs in Θ(kn2) time.

14.1 Strategy, Complexity Analysis

The running time is a major hint as to the nature of the DP. The key observation
is that the optimal way of selecting j points from points 1, . . . , i (such that these j
points partition the segment between these r points with minimum square error) with
the jth point being i must consist of an optimal way of selecting j − 1 points from
points 1, . . . , r, where r can be any point in j, . . . , i and the (j − 1)st point is r.

To build the DP matrix for this recurrence, we use one row for each sequence of
points 1, . . . , i, for i = 1, . . . , n (hence n rows) and k columns. Cell (i, j) contains the
list of j − 1 points, delimiting j intervals (point i is the jth partition point), selected
from points (1, . . . , i). The first column is trivial to fill since the point selected has to
be the end point of the interval. The matrix will be lower triangular since we must have
i > j. To fill a cell (i, j) we need to look at only the entries of the previous column: to
select j − 1 points from the best possible way of selecting j − 2 points. Overall, then,
we use Θ(n) time per cell and thus Θ(n2k) time overall, using Θ(nk) space.

14.2 Recurrence Relation

Subproblem: We define OPT [i][j] as the optimal cost for selecting j − 1 points
from the first i points to partition the segment from P1 to Pi into j pieces.

Recurrence relation could be expressed as:

@TSJ: stan43@gatech.edu 21



Algorithm · Dynamic Programming Quals Problems

OPT (i, j) =

{
min

j−1<r≤i
[OPT (r, j − 1) + (Pi − Pr − L)2] if j > 1

(Pi − P1 − L)2 if j = 1
(32)

15 Constraint Subset (Final)

You are given an interval [0,M ] and you have n points on this interval x1, x2, . . . , xn

(see illustration below). Each point xi is associated with a score si. You will be choosing
a subset of these points, and earn the total score which is the sum of scores of the chosen
points. There is a constraint, that the distance between any two adjacent chosen points
is at least k, where k < xn − x1.

Please design a dynamic programming algorithm to choose the subset of points from
x1, x2, . . . , xn such that the total score you collect is maximized.

Figure 3: Constraint Subset

1. Define the subproblem and write the recurrence (include base cases) relations.

2. Provide the bottom-up implementation pseudocode.

3. What are the time and space requirements in terms of n of the bottom-up imple-
mentation?

4. Give pseudocode for the back-tracing step that returns the optimal subset of
points.

15.1 Strategy

This problem is similar with the Quality problem. In the Quality problem, if we
choose ith point, we need to consider jth point with 0 ≤ j ≤ i. But in this problem, j is
not explicitly stated, it is determined by a constraint. In this case, the constraint could
not easily stated using math relation, so we can just state it in words! Notice
that in Quality problem, we have to choose all the points (segmentation), but here
we are allowed to not include some points, therefore the binary choices need to be
implemented.

15.2 Recurrence Relation

Subproblem: We define OPT [i] as the maximum score we can get by considering
the first i points and including the ith point.

Recurrence relation could be expressed as:

OPT [i] = max{OPT [i− 1], si +OPT [j]} (33)

@TSJ: stan43@gatech.edu 22



Algorithm · Dynamic Programming Quals Problems

Here j is the largest index such that xj ≤ xi − k. Therefore, the base case will
be (assuming there is no point to consider):

OPT [0] = 0 (34)

15.3 Bottom-up

Figure 4: Bottom-up Algorithm

@TSJ: stan43@gatech.edu 23



Algorithm · Dynamic Programming Quals Problems

15.4 Backtracing

Figure 5: Backtracing Algorithm

15.5 Complexity Analysis

The time complexity is O(n2) because we have a nested loop. The space complexity
is O(n) because we are using 1D array.

@TSJ: stan43@gatech.edu 24


	Trick-or-treating (HW4)
	Strategy
	Recurrence Relation
	Bottom-up
	Top-down
	Backtracing
	Complexity Analysis

	Water Supply Schedule (Spring 2024)
	Strategy
	Recurrence Relation
	Complexity Analysis

	Climb Step (Fall 2023)
	Strategy
	Recurrence Relation
	Complexity Analysis

	States and Electoral Votes (2D, Spring 2023)
	Strategy
	Recurrence Relation
	Top-down, Backtracing
	Bottom-up, Backtracing
	Complexity Analysis

	Merge Two Sequences (2D, Spring 2023)
	Strategy
	Recurrence Relation
	Complexity Analysis

	String Reading (Segmentation, Spring 2024)
	Strategy
	Recurrence Relation
	Bottom-up
	Top-down
	Complexity Analysis

	Bookshelf (Segmentation, Fall 2023)
	Strategy
	Recurrence Relation
	Complexity Analysis

	Longest Subsequence (Fall 2022)
	Strategy
	Recurrence Relation
	Bottom-up, Backtracing
	Complexity Analysis

	Meal Delivery (Fall 2022)
	Strategy
	Recurrence relation
	Pseudocode
	Complexity Analysis

	Cut Points (Spring 2022)
	Strategy
	Recurrence Relation
	Complexity Analysis

	Difficult Assignment (Spring 2022)
	Strategy
	Recurrence Relation
	Complexity Analysis

	Courses and Hours (Fall 2020)
	Strategy
	Recurrence Relation
	Complexity Analysis

	Red, Black Color (Fall 2019)
	Strategy
	Greedy
	Recurrence Relation
	Complexity Analysis

	Minimize Length (Hardest, Fall 2020, Fall 2019, HW 4)
	Strategy, Complexity Analysis
	Recurrence Relation

	Constraint Subset (Final)
	Strategy
	Recurrence Relation
	Bottom-up
	Backtracing
	Complexity Analysis


