
Greedy Quals Problems

Sijian Tan

1 Alternative Interval Scheduling (HW1)

1.1 Problem Definition

For the “interval scheduling” problem introduced in the lectures, consider the fol-
lowing algorithm:

• Sort the jobs by ascending order of start time, and obtain jobs J1, J2, . . . , Jn,
where s1 ≤ s2 ≤ · · · ≤ sn. (si is the start time of job Ji).

• Starting with i = n and at every step decreasing i by 1, add the job to the set A
(A denotes the set of selected jobs) if job Ji is compatible with all jobs in A.

Prove that this algorithm is optimal.

1.2 Proof

1.2.1 Define Solutions

• Let G1, G2, ..., Gk be the starting times of the jobs selected based on the greedy
algorithm order, start from the end.

• Let O1, O2, ..., Om start times of the jobs in an optimal solution.

We want to show that k ≥ m, the number of jobs selected in the greedy solution is
at least the number of jobs in the optimal solution.

1.2.2 Greedy Stays Ahead

We will show that each step i, the greedy solution has included at least as many
jobs as the optimal solution. In other words, we need to prove that Gi ≥ Oi (notice
that here it is the starting time) for all i so that to prove the greedy solution could at
least many jobs as the optimal solution.

1.2.3 Inductive Argument

For the base case:

• For the first job to be selected, because the greedy solution select the latest
starting time (start from the end), so G1 ≥ O1

1



Algorithm · Greedy Quals Problems

For the inductive step:

• Assume that for some i, the greedy algorithm has selected the jobs such that
Gj ≥ Oj for all j ≤ i.

• Now consider the (i+1)th selection. The greedy algorithm will select the Gi+1 as
the compatible job with latest starting time after Gi, and optimal solution will
select the job with some other time.

• Then by the inductive hypothesis, Gi ≥ Oi, so Gi+1 ≥ Oi+1

1.2.4 Conclusion

• Since Gi ≥ Oi for all i, the greedy algorithm stays ahead of the optimal solution
at each step.

• This implies that the greedy algorithm could include the jobs at least as the
optimal solution (time processes slower, so could include more compatible jobs)

• Therefore, the total number of jobs selected by the greedy algorithm could not
be less than the number used by the optimal solution (k ≥ m)

• Therefore, greedy is optimal.

2 Weighted Item Addition (HW1)

2.1 Problem Definition

You are given n items and each item i has a value vi (vi ≥ 0) and weight wi. Given
a total weight limit S, you are asked to select a subset of items whose total weight does
not exceed S, and whose total value is maximized. Note: you can take a fraction of any
item. For example, if you take a fraction k of item i, you gain value k · vi and weight
k · wi is added.

1. Please design a greedy algorithm that yields the optimal solution.

2. Prove the algorithm yields the optional solution using the exchange argument.

2.2 Algorithm

In this question, the limit condition is weight, and we want to maximize the total
value. Therefore, the algorithm is to sort the value per unit weight, which could be
expressed as the ratio:

ri =
vi
wi

(1)

The larger the ratio is, the more efficient it will be for adding the total value.
Therefore, we want to pick the items based on order of ratios using greedy algorithm,
then pick a fraction of the last item to reach the weight requirement. The pseudo code
is shown below:

The steps of exchange argument proof include:

@TSJ: stan43@gatech.edu 2



Algorithm · Greedy Quals Problems

Algorithm 1 Greedy algorithm

Sort items by the value/weight ratio so that r1 > r2 > . . . > rn
A← ∅ ▷ Initialize the solution set.
wt = S ▷ Initialize the total weight for reduction.
for j = 1 to n do

if wt > 0 then ▷ Not reaching the limit yet
if wt > wj then ▷ Can still take a full item

wt = wt − wj

kj = 1
A← A ∪ (j, kj)

else ▷ Need to take a fraction of item
kj = wt/wj

wt = 0
A← A ∪ (j, kj)

end if
end if

end for
return A

1. Assume there is an optimal solution O that is different from greedy solution G.

2. Because G is a greedy solution, we include the higher value-to-weight ratio first,
which is the essence of a greedy approach: it makes the locally optimal choice
at each step with the hope of finding a global optimum.

3. Now we assume j be the first item (in sorted order) that differs in O and G,
because we assume O is better than G under the same S limit, so we assume j is
included more in O than in G. This could be done in two ways: either all the
other items are the same in fractions in two solutions, or there are some changes
in fractions of items in two solutions.

4. For the first way, if solution O includes more of item j than G, it would be to
exceed the weight limit S, because the fraction of j in G is already the available
maximum when we keep fill the higher ratio items before j item.

5. Therefore, this is not possible without exceeding the weight limit. Now we assume
there must be an item k with a larger (if lower, than it will not be efficient, not
optimal solution anymore) in O, with less fraction included in O than in G.
However, it means O does not take full advantage of higher value-to-weight ratio
item, which will be less efficient, the solution will also be not optimal.

6. Therefore, because of these contradictions, there could not be any items difference
between O and G, which means that G is truly the optimal solution.

3 Supercomputer (Midterm)

Consider the following job scheduling problem:

@TSJ: stan43@gatech.edu 3



Algorithm · Greedy Quals Problems

You have n jobs J1, J2, . . . , Jn, one supercomputer and n identical PCs. Each job
needs to be first preprocessed on the supercomputer, and then it needs to be finished
on one of the PCs. Job Ji needs pi seconds of time on the supercomputer, followed by
fi seconds of time on a PC.

Since there are n PCs, the finishing of the jobs can be performed fully in parallel,
where each PC can process one job. However, the supercomputer can only work on a
single job at a time, so you need to work out an order in which to schedule the jobs to
the supercomputer. As soon as a job is done on the supercomputer, it can be handed
off to a PC for finishing, and the supercomputer can start to process the next job.

The completion time of all jobs is the earliest time at which all jobs will have finished
processing on the PCs. Describe a greedy algorithm which produces a schedule that
minimizes the completion time, and prove the correctness of your algorithm.

3.1 Algorithm

Arrange the jobs in descending order of fi, then process all the jobs in this order.

3.2 Proof

We prove this by an exchange argument. Consider any optimal solution, and suppose
it does not follow the order in greedy algorithm. Then the optimal solution must contain
a pair of i and j such that j is processed directly after i, such that fi < fj. We call this
pair (i, j) as an inversion. Assume the supercomputer has worked Tbefore time before
job i. Therefore, before the swap, the completion times after these two jobs are:

Ti = Tbefore + pi + fi (2)

Tj = Tbefore + pi + pj + fj (3)

So the completion time in this case is Tj. Then, if we swap these two jobs, the
completion time after these two jobs are:

T ′j = Tbefore + pj + fj (4)

T ′i = Tbefore + pj + pi + fi (5)

Even though it is hard to compare T ′
j and T ′

i , but it is easily to see that:

T ′j < Tj, T ′i < Tj (6)

Therefore, this swap of inversion will actually shorten the final complete time, which
will not worsen the optimal solution.

Continuing in this way, we can eliminate all inversions without worsening the optimal
solution. At the end of this process, the optimal solution will have the same order as
greedy algorithm. Thus the greedy algorithm is optimal.

@TSJ: stan43@gatech.edu 4



Algorithm · Greedy Quals Problems

4 Homework Assignment (Final)

At the start of the semester you are given n homework assignments {a1, . . . , an}.
You can do the assignments in any order, but you must turn in 1 assignment per week
over the n weeks of the semester. Assignment ai has a difficulty di (assume the difficulty
values are distinct). If you turn in assignment ai on week j, you get (n− j) · di points.

Please give a greedy algorithm which finds the order of the assignments that max-
imizes your points, and use the exchange argument to prove the optimality of your
algorithm.

4.1 Algorithm

Do the homework in descending order of difficulties.

4.2 Proof

We can prove this algorithm using exchange argument. Suppose there is an optimal
solution which does not follow the order in greedy algorithm. Then, there must exist
a pair of i and j such that assignment aj is processed right after ai (j = i + 1) and
dj > di. We call this pair of (i, j) as an inversion. Therefore, the points we could get
from these two assignments are:

P = (n− i)di + (n− j)dj (7)

Now, if we swap i and j, then the new points we could get will be:

P ′ = (n− i)dj + (n− j)di (8)

Therefore we could easily see that P ′ > P , therefore this swap of inversion will not
worsen the optimal solution.

Continuing in this way, we can eliminate all inversions without worsening the optimal
solution. At the end of this process, the optimal solution will have the same order as
the greedy algorithm. Thus the greedy algorithm is optimal.

5 City Road (Spring 2024)

There are n cities in a state. Given any two cities x and y, you know the cost of
building a road between x and y. You are required to build a network of roads such that
any city can be reached from any other city (through a direct road or via intermediate
cities). You need to do this at minimum cost.

Describe a greedy algorithm to solve the task and prove its correctness. What is
the running time of your algorithm?

5.1 Proof

Prove Kruskal’s Algorithm.

@TSJ: stan43@gatech.edu 5



Algorithm · Greedy Quals Problems

6 Water Supply (Fall 2023)

There are n houses in a village and one large water tank nearby. You are required
to supply water to all houses by laying pipes. For each house you can either (i) build
a pipe to the water tank or (ii) build a pipe to a house that already has water. You
are given array T , where T [i] is the cost of building a pipe between the water tank and
house i. You are also given list H, where H[i] is a tuple (j, c) indicating the cost c of
building a pipe between houses i and j. The cost c is non-negative.

Your task is to supply water to all the houses at minimum cost. Describe a greedy
algorithm to solve the task and prove the correctness of your algorithm. Your proof of
correctness can use an exchange argument.

Hint: Model the problem as a graph and devise an algorithm for connecting the
vertices.

6.1 Algorithm

Combine T [i] and H[i] as the edge set of the graph, and sort them together in
ascending order. Then use Kruskal’s algorithm to generate the MST.

6.2 Proof

Use greedy to prove Kruskal’s algorithm.

7 Gas Filling (Spring 2023)

Assume you will drive from city A to city B along a highway and you wish to
minimize the time you spend on adding gas to your tank. The following quantities are
given to you:

• the capacity C of your gas tank in liters

• the rate F of fuel consumption in liters/mile

• the rate r in liters/minute at which you can fill your tank at a gas station. r is
the same for all gas stations.

• the distances of the n gas stations from your start point x1, x2, . . . , xn along the
highway. We know x1 = 0, x1 < x2 < . . . < xn and xi−xi−1 ≤ C/F for 2 ≤ i ≤ n.

You will start with an empty tank. For example, if you stop to fill your tank from
2 liters to 8 liters, you would have to stop for 6/r minutes. The goal is to minimize the
total time you stop for gas.

Consider the following two algorithms:

(a) Stop at every gas station, and fill the tank with just enough gas to make it to the
next gas station.

(b) Stop if and only if you don’t have enough gas to make it to the next gas station,
and if you stop, fill the tank up all the way.

@TSJ: stan43@gatech.edu 6



Algorithm · Greedy Quals Problems

For each algorithm either prove or disprove that this algorithm solves the problem
optimally. Your proof of correctness can use an exchange argument.

7.1 Proof for a

We can prove this using an exchange argument. Suppose we have a greedy solu-
tion G1, G2, ..., Gn, where Gi is the filling time at station i, and the optimal solution
O1, O2, ..., On. Assume that the optimal solution is different from the greedy solution,
that means at some i, Gi ̸= Oi. Now we change Oi with Gi, because based on the
greedy solution, Gi will be the minimum time to the fill the gas so that the car could
reach the next station, so Gi ≤ Oi, therefore this exchange will not increase the total
amount of time to fill the gas. Continue this way, finally the optimal solution will be
exchanged to greedy solution. Therefore, greedy is optimal.

7.2 Counterexample for b

This algorithm is not optimal. A simple counterexample is that if the car has some
gas left before it finishes the last route to the destination, based on this algorithm it
needs to be filled fully, which may exceed the amount of gas it needs and it is not
optimal.

8 Disk (Spring 2022)

You are given n distinct points and one line l on the plane and some constant r > 0.
Each of the n points is within distance at most r of line l (as measured along the
perpendicular). You are to place disks of radius r centered along line l such that every
one of the n points lies within at least one disk. Devise a greedy algorithm that runs
in O(n log n) time and uses a minimum number of disks to cover all n points; prove its
optimality. You can use the “greedy stays ahead” argument.

@TSJ: stan43@gatech.edu 7



Algorithm · Greedy Quals Problems

8.1 Algorithm

Figure 1: Disk Solution

Assume the line l is in horizontal direction, then we sort n distinct points based
on their horizontal locations (from left to right, assume they do not have the same
locations). Then when we first meet a uncovered point, we place a disk (with radius as
r) at the right most location that could cover the point (shown in the graph). Continue
to do this until all the points are covered.

8.2 Proof

8.2.1 Define Solutions

• Let G1, G2, ..., Gk be the positions of the disk center selected by the greedy algo-
rithm.

• Let O1, O2, ..., Om be the positions of the disk center selected by the optimal
solution.

We want to show that k ≤ m, or in the other words, greedy algorithm uses at most
number of disks as the optimal solution.

8.2.2 Greedy Stays Ahead

We will show that Gi ≥ Oi for all i, meaning that the greedy algorithm places the
ith center of disk at a position at least as the ith position in the optimal solution

8.2.3 Inductive Argument

For the base case:

• For the first uncover point, because the greedy algorithm always places the center
of the disk at the right most position, so G1 ≥ O1

@TSJ: stan43@gatech.edu 8



Algorithm · Greedy Quals Problems

For the inductive step:

• Assume for some i, the greedy algorithm has selected the positions such that
Gj ≥ Oj for j ≤ i

• Now consider the (i + 1)th center of disk. The greedy algorithm places Gi+1 at
the right most position that could cover the first remaining uncovered point.

• Then by inductive hypothesis, Gi ≥ Oi. Since the greedy algorithm places the
center at the right most point, it ensures that Gi+1 ≥ Oi+1

8.2.4 Conclusion

• Since Gi ≥ Oi for all i, the greedy algorithm stays ahead of the optimal solution
at each step

• This implies that the greedy algorithm could cover at least number of points as
the optimal solution with same number of disks (the covered range is larger)

• Therefore, the total number of disks used by the greedy algorithm could not be
more than the number used by the optimal solution (k ≤ m)

• Therefore, greedy is optimal.

@TSJ: stan43@gatech.edu 9


	Alternative Interval Scheduling (HW1)
	Problem Definition
	Proof
	Define Solutions
	Greedy Stays Ahead
	Inductive Argument
	Conclusion


	Weighted Item Addition (HW1)
	Problem Definition
	Algorithm

	Supercomputer (Midterm)
	Algorithm
	Proof

	Homework Assignment (Final)
	Algorithm
	Proof

	City Road (Spring 2024)
	Proof

	Water Supply (Fall 2023)
	Algorithm
	Proof

	Gas Filling (Spring 2023)
	Proof for a
	Counterexample for b

	Disk (Spring 2022)
	Algorithm
	Proof
	Define Solutions
	Greedy Stays Ahead
	Inductive Argument
	Conclusion



