
Textbook DP Problems

Sijian Tan

1 Problem 1

Let G = (V,E) be an undirected graph with n nodes. Recall that a subset of the
nodes is called an independent set if no two of them are joined by an edge. Finding large
independent sets is difficult in general; but here we’ll see that it can be done efficiently
if the graph is “simple” enough.

Call a graph G = (V,E) a path if its nodes can be written as v1, v2, . . . , vn, with an
edge between vi and vj if and only if the numbers i and j differ by exactly 1. With
each node vi, we associate a positive integer weight wi.

Consider, for example, the five-node path drawn in Figure 6.28. The weights are
the numbers drawn inside the nodes.

The goal in this question is to solve the following problem:
Find an independent set in a path G whose total weight is as large as possible.

Figure 1: Problem 1

Give an algorithm that takes an n-node path G with weights and returns an inde-
pendent set of maximum total weight. The running time should be polynomial in n,
independent of the values of the weights.

1.1 Strategy

Don’t overthink this problem. It is just about whether we choose the ith element.
If we choose this, then we could not choose the (i − 1)th element. If we don’t choose
this, then we could consider the previous (i− 1) elements.

1.2 Recurrence Relation

Subproblem: Define OPT [i] be the maximum weight we could get up to ith ele-
ment.

Recurrence relation could be expressed as:

1

Textbook DP Problems

OPT [i] = max(OPT [i− 1], wi +OPT [i− 2]) (1)

The base cases include:

OPT [1] = w1, OPT [2] = max(w1, w2) (2)

2 Problem 2

If you select a low-stress job for your team in week i, then you get a revenue of
ℓi > 0 dollars; if you select a high-stress job, you get a revenue of hi > 0 dollars. The
catch, however, is that in order for the team to take on a high-stress job in week i, it’s
required that they do no job (of either type) in week i − 1; they need a full week of
prep time to get ready for the crushing stress level. On the other hand, it’s okay for
them to take a low-stress job in week i even if they have done a job (of either type) in
week i− 1.

So, given a sequence of n weeks, a plan is specified by a choice of “low-stress,”
“high-stress,” or “none” for each of the n weeks, with the property that if “high-stress”
is chosen for week i > 1, then “none” has to be chosen for week i − 1. (It’s okay to
choose a high-stress job in week 1.) The value of the plan is determined in the natural
way: for each i, you add ℓi to the value if you choose “low-stress” in week i, and you
add hi to the value if you choose “high-stress” in week i. (You add 0 if you choose
“none” in week i.)

Problem: Given sets of values ℓ1, ℓ2, . . . , ℓn and h1, h2, . . . , hn, find a plan of max-
imum value. (Such a plan will be called optimal.)

Example: Suppose n = 4, and the values of ℓi and hi are given by the following
table. Then the plan of maximum value would be to choose “none” in week 1, a high-
stress job in week 2, and low-stress jobs in weeks 3 and 4. The value of this plan would
be 0 + 50 + 10 + 10 = 70.

Figure 2: Problem 2

Give an efficient algorithm that takes values for ℓ1, ℓ2, . . . , ℓn and h1, h2, . . . , hn and
returns the value of an optimal plan.

2.1 Strategy

Very straightforward binary choice (compatible) problem.

@TSJ: stan43@gatech.edu 2

Textbook DP Problems

2.2 Recurrence Relation

Subproblem: Define OPT [i] be the maximum value we could get up to ith week.
Recurrence relation could be expressed as:

OPT [i] = max(OPT [i− 1] + li, OPT [i− 2] + hi) (3)

And the base cases include:

OPT [1] = max(l1, h1) (4)

OPT [2] = max(OPT [1] + l2, h2) (5)

3 Problem 3

Let G = (V,E) be a directed graph with nodes v1, . . . , vn. We say that G is an
ordered graph if it has the following properties.

(i) Each edge goes from a node with a lower index to a node with a higher index.
That is, every directed edge has the form (vi, vj) with i < j.

(ii) Each node except vn has at least one edge leaving it. That is, for every node vi,
i = 1, 2, . . . , n− 1, there is at least one edge of the form (vi, vj).

The length of a path is the number of edges in it. The goal in this question is to
solve the following problem (see Figure 6.29 for an example).

Given an ordered graph G, find the length of the longest path that begins at
v1 and ends at vn.

Figure 3: Problem 3

Give an efficient algorithm that takes an ordered graph G and returns the length of
the longest path that begins at v1 and ends at vn. (Again, the length of a path is the
number of edges in the path.)

@TSJ: stan43@gatech.edu 3

Textbook DP Problems

3.1 Strategy

When we consider the longest path to a specific node, we need to consider all the
previous nodes connected to this node, and then just plus one. Notice that there may
be some nodes do not have previous nodes connected, we also need to consider this
case.

3.2 Recurrence Relation

Subproblem: Define OPT [i] be the longest path to reach ith vertex.
Recurrence relation could be expressed as:

OPT [i] = max(OPT [j] + 1) (6)

Here, j will be the indices of all vertices go into ith vertex. If no vertex is connected
to ith vertex, then just set OPT [i] = 0.

4 Problem 4

Suppose you’re running a lightweight consulting business—just you, two associates,
and some rented equipment. Your clients are distributed between the East Coast and
the West Coast, and this leads to the following question.

Each month, you can either run your business from an office in New York (NY) or
from an office in San Francisco (SF). In month i, you’ll incur an operating cost of Ni

if you run the business out of NY; you’ll incur an operating cost of Si if you run the
business out of SF. (It depends on the distribution of client demands for that month.)

However, if you run the business out of one city in month i, and then out of the
other city in month i+1, then you incur a fixed moving cost of M to switch base offices.

Given a sequence of n months, a plan is a sequence of n locations—each one equal
to either NY or SF—such that the ith location indicates the city in which you will be
based in the ith month. The cost of a plan is the sum of the operating costs for each of
the n months, plus a moving cost of M for each time you switch cities. The plan can
begin in either city.

Problem: Given a value for the moving cost M , and sequences of operating costs
N1, . . . , Nn and S1, . . . , Sn, find a plan of minimum cost. (Such a plan will be called
optimal.)

Example: Suppose n = 4, M = 10, and the operating costs are given by the
following table.

@TSJ: stan43@gatech.edu 4

Textbook DP Problems

Figure 4: Problem 4

Give an efficient algorithm that takes values for n, M , and sequences of operating
costs N1, . . . , Nn and S1, . . . , Sn, and returns the cost of an optimal plan.

4.1 Strategy

This is a very classical two ends question. We need to consider the cases ending
with different situation, and combine them together.

4.2 Recurrence Relation

Subproblem: Define OPT [i] as the minimum cost up to ith month. Define OPTN [i]
as the minimum cost up to ith month and ending with NY. Define OPTS[i] as the
minimum cost up to ith month and ending with SF.

Recurrence Relation could be expressed as:

OPTN [i] = Ni +min(OPTN [i− 1], OPTS[i− 1] +M) (7)

OPTS[i] = Si +min(OPTS[i− 1], OPTN [i− 1] +M) (8)

OPT [i] = min(OPTN [i], OPTS[i]) (9)

5 Problem 6

In a word processor, the goal of “pretty-printing” is to take text with a ragged right
margin, like this:

@TSJ: stan43@gatech.edu 5

Textbook DP Problems

Figure 5: Ragged Text

and turn it into text whose right margin is as “even” as possible, like this:

Figure 6: Even Text

To make this precise enough for us to start thinking about how to write a pretty-
printer for text, we need to figure out what it means for the right margins to be “even.”
So suppose our text consists of a sequence of words, W = {w1, w2, . . . , wn}, where wi

consists of ci characters. We have a maximum line length of L. We will assume we have
a fixed-width font and ignore issues of punctuation or hyphenation.

A formatting of W consists of a partition of the words in W into lines. In the words
assigned to a single line, there should be a space after each word except the last; and
so if wj, wj+1, . . . , wk are assigned to one line, then we should have[

k−1∑
i=j

(ci + 1)

]
+ ck ≤ L. (10)

We will call an assignment of words to a line valid if it satisfies this inequality. The
difference between the left-hand side and the right-hand side will be called the slack of
the line—that is, the number of spaces left at the right margin.

Give an efficient algorithm to find a partition of a set of words W into valid lines,
so that the sum of the squares of the slacks of all lines (including the last line) is
minimized.

5.1 Strategy

This is a very hard problem, but it is actually similar with the bookself problem in
previous Quals. We don’t need to actually care about the lines, let DP care about it.

@TSJ: stan43@gatech.edu 6

Textbook DP Problems

We only need to care about the last line, and consider the addition of the slacks.

5.2 Recurrence Relation

Subproblem: Define OPT [i] to be the minimum spaces of the optimal solution on
the set of words Wi = [w1, w2, ..., wi].

Recurrence Relation: For any a ≤ b, let Sab denote the slack of a line con-
taining the words wa, wa+1, ..., wb. Define Sa,b = ∞ if these words exceed total length
L.

The optimal solution must begin the last line somewhere (at word wj), and solve
the sub-problem on the earlier lines optimally:

OPT [i] = min1≤j≤i(S
2
j,i +OPT [j − 1]) (11)

6 Problem 7

As a solved exercise in Chapter 5, we gave an algorithm with O(n log n) running
time for the following problem. We’re looking at the price of a given stock over n
consecutive days, numbered i = 1, 2, . . . , n. For each day i, we have a price p(i) per
share for the stock on that day. (We’ll assume for simplicity that the price was fixed
during each day.) We’d like to know: How should we choose a day i on which to buy
the stock and a later day j > i on which to sell it, if we want to maximize the profit
per share, p(j)− p(i)? (If there is no way to make money during the n days, we should
conclude this instead.)

In the solved exercise, we showed how to find the optimal pair of days i and j in
time O(n log n). But, in fact, it’s possible to do better than this. Show how to find the
optimal numbers i and j in time O(n).

6.1 Strategy and Recurrence

This is a very inspiring question. Let OPT [i] denote the maximum possible return
the investors can make if they sell the stock on day i. Node that OPT [1] = 0. Now, in
the optimal way of selling the stock on day i, the investors were either holding it
on day i − 1 or there were not. If they did not hold it, then OPT [i] = 0. If they
held it, then OPT [i] = OPT [i− 1] + (p(i)− p(i− 1)). Thus, we have:

OPT [i] = max(0, OPT [i− 1] + (p(i)− p(i− 1))) (12)

7 Problem 8

The residents of the underground city of Zion defend themselves through a combi-
nation of kung fu, heavy artillery, and efficient algorithms. Recently they have become
interested in automated methods that can help fend off attacks by swarms of robots.

Here’s what one of these robot attacks looks like.

@TSJ: stan43@gatech.edu 7

Textbook DP Problems

• A swarm of robots arrives over the course of n seconds; in the ith second, xi robots
arrive. Based on remote sensing data, you know this sequence x1, x2, . . . , xn in
advance.

• You have at your disposal an electromagnetic pulse (EMP), which can destroy
some of the robots as they arrive; the EMP’s power depends on how long it’s
been allowed to charge up. To make this precise, there is a function f(·) so that if
j seconds have passed since the EMP was last used, then it is capable of destroying
up to f(j) robots.

• So specifically, if it is used in the kth second, and it has been j seconds since it
was previously used, then it will destroy min(xk, f(j)) robots. (After this use, it
will be completely drained.)

• We will also assume that the EMP starts off completely drained, so if it is used
for the first time in the jth second, then it is capable of destroying up to f(j)
robots.

The problem: Given the data on robot arrivals x1, x2, . . . , xn, and given the
recharging function f(·), choose the points in time at which you’re going to activate
the EMP so as to destroy as many robots as possible.

Example: Suppose n = 4, and the values of xi and f(i) are given by the following
table.

Figure 7: Problem 8

The best solution would be to activate the EMP in the 3rd and the 4th seconds.
In the 3rd second, the EMP has gotten to charge for 3 seconds, and so it destroys
min(10, 4) = 4 robots; In the 4th second, the EMP has only gotten to charge for 1
second since its last use, and it destroys min(1, 1) = 1 robot. This is a total of 5.

Give an efficient algorithm that takes the data on robot arrivals x1, x2, . . . , xn, and
the recharging function f(·), and returns the maximum number of robots that can be
destroyed by a sequence of EMP activations.

7.1 Strategy

To determine when to charge the EMP is the same as where to cut the string (quality
problem), so it is actually a segmentation problem.

7.2 Recurrence Relation

Subproblem: Define OPT [i] as the maximum robots we could destroy up to ith

second.

@TSJ: stan43@gatech.edu 8

Textbook DP Problems

Recurrence Relation could be expressed as:

OPT [i] = max1≤j≤i(OPT [j] + min(xi, f(i− j))) (13)

8 Problem 9

You’re helping to run a high-performance computing system capable of processing
several terabytes of data per day. For each of n days, you’re presented with a quantity
of data; on day i, you’re presented with xi terabytes. For each terabyte you process,
you receive a fixed revenue, but any unprocessed data becomes unavailable at the end
of the day (i.e., you can’t work on it in any future day).

You can’t always process everything each day because you’re constrained by the
capabilities of your computing system, which can only process a fixed number of ter-
abytes in a given day. In fact, it’s running some one-of-a-kind software that, while very
sophisticated, is not totally reliable, and so the amount of data you can process goes
down with each day that passes since the most recent reboot of the system. On the first
day after a reboot, you can process s1 terabytes, on the second day after a reboot, you
can process s2 terabytes, and so on, up to sn; we assume s1 > s2 > s3 > · · · > sn > 0.
(Of course, on day i you can only process up to xi terabytes, regardless of how fast your
system is.) To get the system back to peak performance, you can choose to reboot it;
but on any day you choose to reboot the system, you can’t process any data at all.

The problem. Given the amounts of available data x1, x2, . . . , xn for the next n
days, and given the profile of your system as expressed by s1, s2, . . . , sn (and starting
from a freshly rebooted system on day 1), choose the days on which you’re going to
reboot so as to maximize the total amount of data you process.

Example. Suppose n = 4, and the values of xi and si are given by the following
table.

Figure 8: Problem 9

The best solution would be to reboot on day 2 only; this way, you process 8 terabytes
on day 1, then 0 on day 2, then 7 on day 3, then 4 on day 4, for a total of 19. (Note
that if you didn’t reboot at all, you’d process 8 + 1 + 2 + 1 = 12; and other rebooting
strategies give you less than 19 as well.)

Give an efficient algorithm that takes values for x1, x2, . . . , xn and s1, s2, . . . , sn and
returns the total number of terabytes processed by an optimal solution.

8.1 Strategy

To determine when is the best time to reboot is the same as the segmentation
problem, and to determine whether we do the reboot or not is the same as the binary

@TSJ: stan43@gatech.edu 9

Textbook DP Problems

choice problem. But make sure to use correct indices to cover all the calculations.

8.2 Recurrence Relation

Subproblem: Define OPT [i] as the maximum terabytes can be processed up to ith

day.
Recurrence relation could be expressed as:

OPT [i] = max1≤j<i(OPT [i−j−1]+

j∑
k=1

min(sk, xi−j+k), OPT [i−1]+min(si, xi)) (14)

9 Problem 10

Here’s the problem you face. Your job can only run on one of the machines in any
given minute. Over each of the next n minutes, you have a “profile” of how much
processing power is available on each machine. In minute i, you would be able to run
ai > 0 steps of the simulation if your job is on machine A, and bi > 0 steps of the
simulation if your job is on machine B. You also have the ability to move your job
from one machine to the other; but doing this costs you a minute of time in which no
processing is done on your job.

So, given a sequence of n minutes, a plan is specified by a choice of A, B, or “move”
for each minute, with the property that choices A and B cannot appear in consecutive
minutes. For example, if your job is on machine A in minute i, and you want to switch
to machine B, then your choice for minute i + 1 must be move, and then your choice
for minute i + 2 can be B. The value of a plan is the total number of steps that you
manage to execute over the n minutes: so it’s the sum of ai over all minutes in which
the job is on A, plus the sum of bi over all minutes in which the job is on B.

The problem. Given values a1, a2, . . . , an and b1, b2, . . . , bn, find a plan of maximum
value. (Such a strategy will be called optimal.) Note that your plan can start with either
of the machines A or B in minute 1.

Example. Suppose n = 4, and the values of ai and bi are given by the following
table.

Figure 9: Problem 10

Then the plan of maximum value would be to choose A for minute 1, then move for
minute 2, and then B for minutes 3 and 4. The value of this plan would be 10 + 0 +
20 + 20 = 50.

Give an efficient algorithm that takes values for a1, a2, . . . , an and b1, b2, . . . , bn and
returns the value of an optimal plan.

@TSJ: stan43@gatech.edu 10

Textbook DP Problems

9.1 Strategy

This is also a very classical end with two cases problem.

9.2 Recurrence Relation

Subproblem: Define OPT [i] as the maximum values up to ith minute. Define
OPTA[i] as the maximum values up to ith minute and ending with machine A. Define
OPTB[i] as the maximum values up to ith minute and ending with machine B.

Recurrence relation could be expressed as:

OPTA[i] = max(OPTA[i− 1] + ai, OPTB[i− 2] + ai) (15)

OPTB[i] = max(OPTB[i− 1] + bi, OPTA[i− 2] + bi) (16)

OPT [i] = max(OPTA[i], OPTB[i]) (17)

10 Problem 15

On most clear days, a group of your friends in the Astronomy Department gets
together to plan out the astronomical events they’re going to try observing that night.
We’ll make the following assumptions about the events.

• There are n events, which for simplicity we’ll assume occur in sequence separated
by exactly one minute each. Thus event j occurs at minute j; if they don’t observe
this event at exactly minute j, then they miss out on it.

• The sky is mapped according to a one-dimensional coordinate system (measured
in degrees from some central baseline); event j will be taking place at coordinate
dj, for some integer value dj. The telescope starts at coordinate 0 at minute 0.

• The last event, n, is much more important than the others; so it is required that
they observe event n.

The Astronomy Department operates a large telescope that can be used for viewing
these events. Because it is such a complex instrument, it can only move at a rate of one
degree per minute. Thus they do not expect to be able to observe all n events; they
just want to observe as many as possible, limited by the operation of the telescope and
the requirement that event n must be observed.

We say that a subset S of the events is viewable if it is possible to observe each
event j ∈ S at its appointed time j, and the telescope has adequate time (moving at
its maximum of one degree per minute) to move between consecutive events in S.

The problem. Given the coordinates of each of the n events, find a viewable subset
of maximum size, subject to the requirement that it should contain event n. Such a
solution will be called optimal.

Example. Suppose the one-dimensional coordinates of the events are as shown
here.

@TSJ: stan43@gatech.edu 11

Textbook DP Problems

Figure 10: Problem 15

Then the optimal solution is to observe events 1, 3, 6, 9. Note that the telescope
has time to move from one event in this set to the next, even moving at one degree per
minute.

Give an efficient algorithm that takes values for the coordinates d1, d2, . . . , dn of the
events and returns the size of an optimal solution.

10.1 Strategy

The relation is straightforward, if the last event satisfies the condition, then we just
add one.

10.2 Recurrence Relation

Subproblem: Define OPT [i] as the maximum number of event up to ith minutes.
Recurrence relation could be expressed as:

OPT [i] = 1 + max1≤j<i(OPT [j]) (18)

Here j must satisfy the following relation:

|di − dj| ≤ i− j (19)

11 Problem 16

There are many sunny days in Ithaca, New York; but this year, as it happens, the
spring ROTC picnic at Cornell has fallen on a rainy day. The ranking officer decides
to postpone the picnic and must notify everyone by phone. Here is the mechanism she
uses to do this.

Each ROTC person on campus except the ranking officer reports to a unique superior
officer. Thus the reporting hierarchy can be described by a tree T , rooted at the ranking
officer, in which each other node v has a parent node u equal to his or her superior
officer. Conversely, we will call v a direct subordinate of u. See Figure 6.30, in which
A is the ranking officer, B and D are the direct subordinates of A, and C is the direct
subordinate of B.

To notify everyone of the postponement, the ranking officer first calls each of her
direct subordinates, one at a time. As soon as each subordinate gets the phone call, he
or she must notify each of his or her direct subordinates, one at a time. The process
continues this way until everyone has been notified. Note that each person in this
process can only call direct subordinates on the phone; for example, in Figure 6.30, A
would not be allowed to call C.

@TSJ: stan43@gatech.edu 12

Textbook DP Problems

Figure 11: Problem 16

11.1 Strategy and Solution

Figure 12: Problem 16 Solution

@TSJ: stan43@gatech.edu 13

Textbook DP Problems

12 Problem 17

Your friends have been studying the closing prices of tech stocks, looking for inter-
esting patterns. They’ve defined something called a rising trend, as follows.

They have the closing price for a given stock recorded for n days in succession;
let these prices be denoted P [1], P [2], . . . , P [n]. A rising trend in these prices is a
subsequence of the prices P [i1], P [i2], . . . , P [ik], for days i1 < i2 < . . . < ik, so that

• i1 = 1, and

• P [ij] < P [ij+1] for each j = 1, 2, . . . , k − 1.

Thus a rising trend is a subsequence of the days—beginning on the first day and not
necessarily contiguous—so that the price strictly increases over the days in this subse-
quence.

They are interested in finding the longest rising trend in a given sequence of prices.
Example. Suppose n = 7, and the sequence of prices is

10, 1, 2, 11, 3, 4, 12.

Then the longest rising trend is given by the prices on days 1, 4, and 7. Note that
days 2, 3, 5, and 6 consist of increasing prices; but because this subsequence does not
begin on day 1, it does not fit the definition of a rising trend.

12.1 Strategy

This problem is also a straightforward binary problem. We either choose this value
(then we need to start from the last compatible one) or not choose this value.

12.2 Recurrence Relation

Subproblem: Define OPT [i] as number of longest rising trend up to ith day.
Recurrence Relation could be expressed as:

OPT [i] = max(OPT [j] + 1, OPT [i− 1]) (20)

Here, j is the index of largest previous value smaller than p[i], such that p[j] < p[i].

13 Problem 20

Suppose it’s nearing the end of the semester and you’re taking n courses, each with
a final project that still has to be done. Each project will be graded on the following
scale: It will be assigned an integer number on a scale of 1 to g > 1, higher numbers
being better grades. Your goal, of course, is to maximize your average grade on the n
projects.

You have a total of H > n hours in which to work on the n projects cumulatively,
and you want to decide how to divide up this time. For simplicity, assumeH is a positive
integer, and you’ll spend an integer number of hours on each project. To figure out how
best to divide up your time, you’ve come up with a set of functions {fi : i = 1, 2, . . . , n}

@TSJ: stan43@gatech.edu 14

Textbook DP Problems

(rough estimates, of course) for each of your n courses; if you spend h ≤ H hours on
the project for course i, you’ll get a grade of fi(h). (You may assume that the functions
fi are nondecreasing : if h < h′, then fi(h) ≤ fi(h

′).)
So the problem is: Given these functions {fi}, decide how many hours to spend on

each project (in integer values only) so that your average grade, as computed according
to the fi, is as large as possible. In order to be efficient, the running time of your
algorithm should be polynomial in n, g, and H; none of these quantities should appear
as an exponent in your running time.

13.1 Strategy

This question is a classical two constraints problem. We need to maximize the grade,
but at the same time the total hours could not be larger than H.

13.2 Recurrence Relation

Subproblem: We define OPT [i,H ′] as the maximum grades we could get up to ith

course, and with the remaining hours as H ′.
Recurrence Relation could be expressed as:

OPT [i,H ′] = max0≤h≤H ′{OPT [i− 1, H ′ − h] + f(h)} (21)

14 Problem 21

Some time back, you helped a group of friends who were doing simulations for a
computation-intensive investment company, and they’ve come back to you with a new
problem. They’re looking at n consecutive days of a given stock, at some point in the
past. The days are numbered i = 1, 2, . . . , n; for each day i, they have a price p(i) per
share for the stock on that day.

For certain (possibly large) values of k, they want to study what they call k-shot
strategies. A k-shot strategy is a collection of m pairs of days (b1, s1), . . . , (bm, sm),
where 0 ≤ m ≤ k and

1 ≤ b1 < s1 < b2 < s2 < · · · < bm < sm ≤ n.

We view these as a set of up to k nonoverlapping intervals, during each of which the
investors buy 1,000 shares of the stock (on day bi) and then sell it (on day si). The
return of a given k-shot strategy is simply the profit obtained from the m buy-sell
transactions, namely,

1000
m∑
i=1

(p(si)− p(bi)) .

The investors want to assess the value of k-shot strategies by running simulations
on their n-day trace of the stock price. Your goal is to design an efficient algorithm
that determines, given the sequence of prices, the k-shot strategy with the maximum
possible return. Since k may be relatively large in these simulations, your running time
should be polynomial in both n and k; it should not contain k in the exponent.

@TSJ: stan43@gatech.edu 15

Textbook DP Problems

14.1 Strategy and Solution

By transaction (i, j), we mean the single transaction that consists of buying on day
i and selling on day j. Let P [i, j] denote the monetary return from transaction (i, j).
Let Q[i, j] denote the maximum profit obtainable by executing a single transaction
somewhere in the interval of days between i and j. Note that the transaction achieving
the maximum in Q[i, j] is either the transaction (i, j), or else it fits into one of the
intervals [i, j − 1] or [i+ 1, j]. Thus we have

Q[i, j] = max{P [i, j], Q[i, j − 1], Q[i+ 1, j]}.

Using this formula, we can build up all values of Q[i, j] in time O(n2). (By going in
order of increasing i+ j, spending constant time per entry.)

Now, let us say that an m-exact strategy is one with exactly m non-overlapping buy-
sell transactions. Let M [m, d] denote the maximum profit obtainable by an m-exact
strategy on days 1, . . . , d, for 0 ≤ m ≤ k and 0 ≤ d ≤ n. We will use −∞ to denote the
profit obtainable if there isn’t room in days 1, . . . , d to execute m transactions. (E.g. if
d < 2m.) We can initialize M [m, 0] = −∞ and M [0, d] = 0 for each m and each d.

In the optimal m-exact strategy on days 1, . . . , d, the final transaction occupies an
interval that begins at i and ends at j, for some 1 ≤ i ≤ j ≤ d; and up to day i− 1 we
then have an (m− 1)-exact strategy. Thus we have

M [m, d] = max
1≤i<j≤d

{Q[i, j] +M [m− 1, i− 1]}.

We can fill in these entries in order of increasing m + d. The time spent per entry is
O(n), since we’ve already computed all Q[i, j]. Since there are O(kn) entries, the total
time is therefore O(kn2). We can determine the strategy associated with each entry
by maintaining a pointer to the entry that produced the maximum, and tracing back
through the dynamic programming table using these pointers.

Finally, the optimal k-shot strategy is, by definition, an m-exact strategy for some
m ≤ k; thus, the optimal profit from a k-shot strategy is

max
0≤m≤k

M [m,n].

15 Problem 22

To assess how “well-connected” two nodes in a directed graph are, one can not only
look at the length of the shortest path between them, but can also count the number
of shortest paths.

This turns out to be a problem that can be solved efficiently, subject to some
restrictions on the edge costs. Suppose we are given a directed graph G = (V,E),
with costs on the edges; the costs may be positive or negative, but every cycle in the
graph has strictly positive cost. We are also given two nodes v, w ∈ V . Give an efficient
algorithm that computes the number of shortest v-w paths in G. (The algorithm should
not list all the paths; just the number suffices.)

@TSJ: stan43@gatech.edu 16

Textbook DP Problems

15.1 Strategy and Solution

Let ce denote the cost of the edge e and we will overload the notation and write cst
to denote the cost of the edge between the nodes s and t.

This problem is by its nature quite similar to the shortest path problem. Let us
consider a two-parameter function Opt(i, s) denoting the optimal cost of the shortest
path to s using exactly i edges, and let N(i, s) denote the number of such paths.

We start by setting Opt(i, v) = 0 and Opt(i, v′) = ∞ for all v′ ̸= v. Also set
N(i, v) = 1 and N(i, v′) = 0 for all v′ ̸= v. Intuitively this means that the source v is
reachable with cost 0 and there is currently one path to achieve this.

Then we compute the following recurrence:

Opt(i, s) = min
t,(t,s)∈E

{Opt(i− 1, t) + cts}.

The above recurrence means that in order to travel to node s using exactly i edges,
we must travel to a predecessor node t using exactly i − 1 edges and then take the
edge connecting t to s. Once of course the optimal cost value has been computed,
the number of paths that achieve this optimum would be computed by the following
recurrence:

N(i, s) =
∑

t,(t,s)∈E
and Opt(i,s)=Opt(i−1,t)+cts

N(i− 1, t).

In other words, we look at all the predecessors from which the optimal cost path
may be achieved and add all the counters.

The above recurrences can be calculated by a double loop, where the outside loops
over i and the inside loops over all the possible nodes s. Once the recurrences have
been solved, our target optimal path to w is obtained by taking the minimum of all the
paths of different lengths to w—that is:

Optfinal(w) = min
i
{Opt(i, w)}.

And the number of such paths can be computed by adding up the counters of all the
paths which achieve the minimal cost.

Nfinal(w) =
∑

i,Opt(i,w)=Opt(w)

N(i, w).

16 Problem 25

Consider the problem faced by a stockbroker trying to sell a large number of shares
of stock in a company whose stock price has been steadily falling in value. It is always
hard to predict the right moment to sell stock, but owning a lot of shares in a single
company adds an extra complication: the mere act of selling many shares in a single
day will have an adverse effect on the price.

Since future market prices, and the effect of large sales on these prices, are very hard
to predict, brokerage firms use models of the market to help them make such decisions.
In this problem, we will consider the following simple model. Suppose we need to sell
x shares of stock in a company, and suppose that we have an accurate model of the

@TSJ: stan43@gatech.edu 17

Textbook DP Problems

market: it predicts that the stock price will take the values p1, p2, . . . , pn over the next
n days. Moreover, there is a function f(·) that predicts the effect of large sales: if we
sell y shares on a single day, it will permanently decrease the price by f(y) from that
day onward. So, if we sell y1 shares on day 1, we obtain a price per share of p1 − f(y1),
for a total income of y1 · (p1 − f(y1)). Having sold y1 shares on day 1, we can then sell
y2 shares on day 2 for a price per share of p2 − f(y1)− f(y2); this yields an additional
income of y2 · (p2 − f(y1) − f(y2)). This process continues over all n days. (Note, as
in our calculation for day 2, that the decreases from earlier days are absorbed into the
prices for all later days.)

Design an efficient algorithm that takes the prices p1, . . . , pn and the function f(·)
(written as a list of values f(1), f(2), . . . , f(x)) and determines the best way to sell
x shares by day n. In other words, find natural numbers y1, y2, . . . , yn so that x =
y1 + . . . + yn, and selling yi shares on day i for i = 1, 2, . . . , n maximizes the total
income achievable. You should assume that the share value pi is monotone decreasing,
and f(·) is monotone increasing; that is, selling a larger number of shares causes a larger
drop in the price. Your algorithm’s running time can have a polynomial dependence on
n (the number of days), x (the number of shares), and p1 (the peak price of the stock).

Example Consider the case when n = 3; the prices for the three days are 90, 80,
40; and f(y) = 1 for y ≤ 40, 000 and f(y) = 20 for y > 40, 000. Assume you start with
x = 100, 000 shares. Selling all of them on day 1 would yield a price of 70 per share, for
a total income of 7,000,000. On the other hand, selling 40,000 shares on day 1 yields
a price of 89 per share, and selling the remaining 60,000 shares on day 2 results in a
price of 59 per share, for a total income of 7,100,000.

16.1 Strategy

This is also a two constraints problem. Notice that this question assumes that
f(x) + f(y) = f(x+ y), which could simplify the problem.

16.2 Recurrence Relation

Subproblem: Define OPT [i, x′] as the maximum income we could get up to ith

day and the remaining x′ shares.
Recurrence Relation could be expressed as:

OPT [i, x′] = max0≤y≤x′(OPT [i− 1, x′ − y] + y(pi − f(y))) (22)

17 Problem 26

Consider the following inventory problem. You are running a company that sells
some large product (let’s assume you sell trucks), and predictions tell you the quantity
of sales to expect over the next n months. Let di denote the number of sales you expect
in month i. We’ll assume that all sales happen at the beginning of the month, and
trucks that are not sold are stored until the beginning of the next month. You can
store at most S trucks, and it costs C to store a single truck for a month. You receive
shipments of trucks by placing orders for them, and there is a fixed ordering fee of K

@TSJ: stan43@gatech.edu 18

Textbook DP Problems

each time you place an order (regardless of the number of trucks you order). You start
out with no trucks. The problem is to design an algorithm that decides how to place
orders so that you satisfy all the demands {di}, and minimize the costs. In summary:

• There are two parts to the cost: (1) storage—it costs C for every truck on hand
that is not needed that month; (2) ordering fees—it costsK for every order placed.

• In each month you need enough trucks to satisfy the demand di, but the number
left over after satisfying the demand for the month should not exceed the inventory
limit S.

Give an algorithm that solves this problem in time that is polynomial in n and S.

17.1 Strategy

This problem is actually straight forward, but we need to set a custom variable, the
amount of truck that would be left in day i. Now we need to consider the cases if the
left trucks are enough for the next day’s demand. If not we need to order; if yes, we
need to consider if order is more cheaper.

17.2 Recurrence Relation

Subproblem: Define OPT [i, s] as the minimum cost up to ith months with s trucks
left over:

Recurrence Relation could be expressed as:

• If s+ di > S:
OPT [i, s] = OPT [i− 1, 0] +K (23)

• Else:
OPT [i, s] = min(OPT [i− 1, s+ di], OPT [i− 1, 0] +K) (24)

18 Problem 27

The owners of an independently operated gas station are faced with the following
situation. They have a large underground tank in which they store gas; the tank can
hold up to L gallons at one time. Ordering gas is quite expensive, so they want to
order relatively rarely. For each order, they need to pay a fixed price P for delivery in
addition to the cost of the gas ordered. However, it costs c to store a gallon of gas for
an extra day, so ordering too much ahead increases the storage cost.

They are planning to close for a week in the winter, and they want their tank to be
empty by the time they close. Luckily, based on years of experience, they have accurate
projections for how much gas they will need each day until this point in time. Assume
that there are n days left until they close, and they need gi gallons of gas for each of
the days i = 1, . . . , n. Assume that the tank is empty at the end of day 0. Give an
algorithm to decide on which days they should place orders, and how much to order so
as to minimize their total cost.

@TSJ: stan43@gatech.edu 19

Textbook DP Problems

18.1 Strategy

This problem is very similar with the last one. However, we need to maker sure
everything is empty at the last day.

18.2 Recurrence Relation

Subproblem: Define OPT [i, s] as the minimum cost we could reach up to ith day
with s gallons left. Notice that here 0 ≤ i ≤ n− 1.

Recurrence Relation could be expressed as:

• If s+ gi > L:
OPT [i, s] = OPT [i− 1, 0] + P (25)

• Else:
OPT [i, s] = min(OPT [i− 1, c(s+ gi)], OPT [i− 1, 0] + P) (26)

@TSJ: stan43@gatech.edu 20

	Problem 1
	Strategy
	Recurrence Relation

	Problem 2
	Strategy
	Recurrence Relation

	Problem 3
	Strategy
	Recurrence Relation

	Problem 4
	Strategy
	Recurrence Relation

	Problem 6
	Strategy
	Recurrence Relation

	Problem 7
	Strategy and Recurrence

	Problem 8
	Strategy
	Recurrence Relation

	Problem 9
	Strategy
	Recurrence Relation

	Problem 10
	Strategy
	Recurrence Relation

	Problem 15
	Strategy
	Recurrence Relation

	Problem 16
	Strategy and Solution

	Problem 17
	Strategy
	Recurrence Relation

	Problem 20
	Strategy
	Recurrence Relation

	Problem 21
	Strategy and Solution

	Problem 22
	Strategy and Solution

	Problem 25
	Strategy
	Recurrence Relation

	Problem 26
	Strategy
	Recurrence Relation

	Problem 27
	Strategy
	Recurrence Relation

