
Textbook Greedy Problems

Sijian Tan

1 Problem 1

Decide whether you think the following statement is true or false. If it
is true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary connected, undirected graph with a distinct cost c(e) on every
edge e. Suppose e∗ is the cheapest edge in G; that is, c(e∗) < c(e) for every edge e ̸= e∗.
Then there is a minimum spanning tree T of G that contains the edge e∗.

1.1 Solution

This is true. Based on Kruskal’s algorithm, e∗ will be the first edge considered, so
it will be included in MST.

2 Problem 2

For each of the following two statements, decide whether it is true or false.
If it is true, give a short explanation. If it is false, give a counterexample.

(a) Suppose we are given an instance of the Minimum Spanning Tree Problem on a
graph G, with edge costs that are all positive and distinct. Let T be a minimum
spanning tree for this instance. Now suppose we replace each edge cost ce by its
square, c2e, thereby creating a new instance of the problem with the same graph
but different costs.

True or false? T must still be a minimum spanning tree for this new instance.

(b) Suppose we are given an instance of the Shortest s-t Path Problem on a directed
graph G. We assume that all edge costs are positive and distinct. Let P be a
minimum-cost s-t path for this instance. Now suppose we replace each edge cost
ce by its square, c2e, thereby creating a new instance of the problem with the same
graph but different costs.

True or false? P must still be a minimum-cost s-t path for this new instance.

2.1 Question a

True. If we feed the cost c2e into Kruskal’s algorithm, it will sort them in the same
order, and hence put the same subset of edges in MST.

1



Textbook Greedy Problems

2.2 Question b

Figure 1: Problem 2

From the graph, we can see that before squaring, we will choose [A,B] from A to
B, after squaring, we will choose [A,C,B] from A to B.

3 Problem 3

You are consulting for a trucking company that does a large amount of business
shipping packages between New York and Boston. The volume is high enough that
they have to send a number of trucks each day between the two locations. Trucks have
a fixed limit W on the maximum amount of weight they are allowed to carry. Boxes
arrive at the New York station one by one, and each package i has a weight wi. The
trucking station is quite small, so at most one truck can be at the station at any time.
Company policy requires that boxes are shipped in the order they arrive; otherwise, a
customer might get upset upon seeing a box that arrived after his make it to Boston
faster. At the moment, the company is using a simple greedy algorithm for packing:
they pack boxes in the order they arrive, and whenever the next box does not fit, they
send the truck on its way.

But they wonder if they might be using too many trucks, and they want your opinion
on whether the situation can be improved. Here is how they are thinking. Maybe one
could decrease the number of trucks needed by sometimes sending off a truck that was
less full, and in this way allow the next few trucks to be better packed.

Prove that, for a given set of boxes with specified weights, the greedy algorithm
currently in use actually minimizes the number of trucks that are needed. Your proof
should follow the type of analysis we used for the Interval Scheduling Problem: it should
establish the optimality of this greedy packing algorithm by identifying a measure under
which it “stays ahead” of all other solutions.

3.1 Solution

1. Assume an optimal solution: Let’s assume there is an optimal solution that
uses fewer trucks than the greedy algorithm. Denote the number of trucks used
by the greedy algorithm as Tg and by the optimal solution as Topt, with Topt < Tg

2. Compare the packing of the first truck:
Consider the first truck in the greedy algorithm, which carries the boxes b1, b2, . . . , bk

@TSJ: stan43@gatech.edu 2



Textbook Greedy Problems

until the sum of the weights of these boxes is just under or exactly equal to W .
That is:

k∑
i=1

wi ≤ W and
k+1∑
i=1

wi > W

In the optimal solution, the first truck can carry a different set of boxes. However,
since the total weight that the first truck in the greedy algorithm carries is close
to or equal to W , the first truck in the optimal solution cannot carry more than
the first truck in the greedy solution.

3. Induction on remaining trucks:
Now, consider the remaining trucks. By induction, we can argue that for each
subsequent truck, the greedy algorithm will always pack as efficiently as possible,
and since the optimal solution supposedly uses fewer trucks, there must be a
point where the optimal solution packs a truck more efficiently than the greedy
algorithm. However, by the nature of the greedy algorithm, which packs until it
can’t pack any more, this cannot happen.

4. Contradiction:
The assumption that Topt < Tg implies that the optimal solution uses fewer trucks
than the greedy solution, but this leads to a contradiction because the greedy
algorithm ensures that each truck is as full as possible before moving to the next
truck. Therefore, no solution can use fewer trucks than the greedy algorithm.

4 Problem 4

Some of your friends have gotten into the burgeoning field of time-series data mining,
in which one looks for patterns in sequences of events that occur over time. Purchases at
stock exchanges—what’s being bought—are one source of data with a natural ordering
in time. Given a long sequence S of such events, your friends want an efficient way
to detect certain “patterns” in them—for example, they may want to know if the four
events

buy Yahoo, buy eBay, buy Yahoo, buy Oracle

occur in this sequence S, in order but not necessarily consecutively.
They begin with a collection of possible events (e.g., the possible transactions) and

a sequence S of n of these events. A given event may occur multiple times in S (e.g.,
Yahoo stock may be bought many times in a single sequence S). We will say that a
sequence S ′ is a subsequence of S if there is a way to delete certain of the events from
S so that the remaining events, in order, are equal to the sequence S ′. So, for example,
the sequence of four events above is a subsequence of the sequence

buy Amazon, buy Yahoo, buy eBay, buy Yahoo, buy Yahoo, buy Oracle

Their goal is to be able to dream up short sequences and quickly detect whether
they are subsequences of S. So this is the problem they pose to you: Give an algorithm
that takes two sequences of events—S ′ of length m and S of length n, each possibly
containing an event more than once—and decides in time O(m + n) whether S ′ is a
subsequence of S.

@TSJ: stan43@gatech.edu 3



Textbook Greedy Problems

4.1 Solution

Figure 2: Problem 4

5 Problem 5

Let’s consider a long, quiet country road with houses scattered very sparsely along
it. (We can picture the road as a long line segment, with an eastern endpoint and a
western endpoint.) Further, let’s suppose that despite the bucolic setting, the residents
of all these houses are avid cell phone users. You want to place cell phone base stations
at certain points along the road, so that every house is within four miles of one of the
base stations.

Give an efficient algorithm that achieves this goal, using as few base stations as
possible.

5.1 Greedy Algorithm

The algorithm includes the following steps:

1. Sort the houses by their position

2. Place the first base station at the position h1+4 miles, where h1 is the first house
in the sorted list.

3. Skip all houses covered by this base station

4. Repeat the process for the next uncovered house until all houses are covered.

@TSJ: stan43@gatech.edu 4



Textbook Greedy Problems

5.2 Proof:

5.2.1 Define Solutions:

• Let G1, G2, ..., Gk be the positions of the base stations placed by the greedy algo-
rithm

• Let O1, O2, ..., Om be the positions of the base stations in an optimal solution

We want to show that k ≤ m, the number of stations in the greedy solution is at
most the number of stations in the optimal solution.

5.2.2 Greedy Stays Ahead:

We will show that Gi ≥ Oi for all i, meaning that the greedy algorithm places the
ith base station at a position that is at least as far to the right as the ith station in the
optimal solution.

5.2.3 Inductive Argument

For the base case:

• Since the greedy algorithm always places the station at the furthest point possible
within 4 miles of the first uncovered house, so G1 ≥ O1

For the inductive step:

• Assume that for some i, the greedy algorithm has placed base stations such that
Gj ≥ Oj for all j ≤ i

• Now consider the (i + 1)th base station. The greedy algorithm places Gi+1 at
the furthest point that can cover the first uncovered house after Gi. The optimal
solution places Oi+1 at some point that covers at least the same number of houses.

• Then by the inductive hypothesis, Gi ≥ Oi. Since the greedy algorithm places
the station at the furthest point, it ensures that Gi+1 ≥ Oi+1

5.2.4 Conclusion

• Since Gi ≥ Oi for all i, the greedy algorithm stays ahead of the optimal solution
at each step.

• This implies that the greedy algorithm covers the houses at least as efficiently as
the optimal solution

• Therefore, the total number of base stations used by the greedy algorithm could
not be more than the number used by the optimal solution (k ≤ m)

@TSJ: stan43@gatech.edu 5



Textbook Greedy Problems

6 Problem 6

Your friend is working as a camp counselor, and he is in charge of organizing ac-
tivities for a set of junior-high-school-age campers. One of his plans is the following
mini-triathalon exercise: each contestant must swim 20 laps of a pool, then bike 10
miles, then run 3 miles. The plan is to send the contestants out in a staggered fashion,
via the following rule: the contestants must use the pool one at a time. In other words,
first one contestant swims the 20 laps, gets out, and starts biking. As soon as this first
person is out of the pool, a second contestant begins swimming the 20 laps; as soon as
he or she is out and starts biking, a third contestant begins swimming . . . and so on.)

Each contestant has a projected swimming time (the expected time it will take him
or her to complete the 20 laps), a projected biking time (the expected time it will take
him or her to complete the 10 miles of bicycling), and a projected running time (the
time it will take him or her to complete the 3 miles of running). Your friend wants
to decide on a schedule for the triathalon: an order in which to sequence the starts of
the contestants. Let’s say that the completion time of a schedule is the earliest time
at which all contestants will be finished with all three legs of the triathalon, assuming
they each spend exactly their projected swimming, biking, and running times on the
three parts. (Again, note that participants can bike and run simultaneously, but at
most one person can be in the pool at any time.) What’s the best order for sending
people out, if one wants the whole competition to be over as early as possible? More
precisely, give an efficient algorithm that produces a schedule whose completion time is
as small as possible.

6.1 Proof

Let the contestants be numbered 1, . . . , n, and let si, bi, ri denote the swimming,
biking, and running times of contestant i. Here is an algorithm to produce a schedule:
arrange the contestants in order of decreasing bi + ri, and send them out in this order.
We claim that this order minimizes the completion time.

We prove this by an exchange argument. Consider any optimal solution, and suppose
it does not use this order. Then the optimal solution must contain two contestants i
and j so that j is sent out directly after i, but bi + ri < bj + rj. We will call such
a pair (i, j) an inversion. Consider the solution obtained by swapping the orders of i
and j. In this swapped schedule, j completes earlier than he/she used to. Also, in the
swapped schedule, i gets out of the pool when j previously got out of the pool; but
since bi + ri < bj + rj, i finishes sooner in the swapped schedule than j finished in the
previous schedule. Hence our swapped schedule does not have a greater completion
time, and so it too is optimal.

Continuing in this way, we can eliminate all inversions without increasing the com-
pletion time. At the end of this process, we will have a schedule in the order produced
by our algorithm, whose completion time is no greater than that of the original optimal
order we considered. Thus the order produced by our algorithm must also be optimal.

@TSJ: stan43@gatech.edu 6



Textbook Greedy Problems

7 Problem 8

Suppose you are given a connected graph G, with edge costs that are all distinct.
Prove that G has a unique minimum spanning tree.

7.1 Proof

Suppose T and T ′ are two distinct minimum spanning trees of G. Since T and T ′

have the same number of edges, but are not equal, there is some edge e′ in T ′ but not
in T . If we add e′ to T , we will get a cycle C. Let e be the most expensive edge on this
cycle. Then by the cycle property, e does not belong to any minimum spanning tree,
contradicting the fact that it is in at least one of T or T ′.

8 Problem 13

A small business—say, a photocopying service with a single large machine—faces
the following scheduling problem. Each morning they get a set of jobs from customers.
They want to do the jobs on their single machine in an order that keeps their customers
happiest. Customer i’s job will take time ti to complete. Given a schedule (i.e., an
ordering of the jobs), let Ci denote the finishing time of job i. For example, if job j is
the first to be done, we would have Cj = tj; and if job j is done right after job i, we
would have Cj = Ci + tj. Each customer i also has a given weight wi that represents
his or her importance to the business. The happiness of customer i is expected to be
dependent on the finishing time of i’s job. So the company decides that they want to
order the jobs to minimize the weighted sum of the completion times,

∑n
i=1 wiCi.

Design an efficient algorithm to solve this problem. That is, you are given a
set of n jobs with a processing time ti and a weight wi for each job. You want to order
the jobs so as to minimize the weighted sum of the completion times,

∑n
i=1 wiCi.

Example. Suppose there are two jobs: the first takes time t1 = 1 and has weight
w1 = 10, while the second job takes time t2 = 3 and has weight w2 = 2. Then doing
job 1 first would yield a weighted completion time of 10 · 1+ 2 · 4 = 18, while doing the
second job first would yield the larger weighted completion time of 10 · 4 + 2 · 3 = 46.

8.1 Algorithm

Let the jobs be numbered 1, 2, ..., n, and let wi, ti and Ci denote the weight, time
to complete and finishing time of job i. Arrange the jobs in order of decreasing wi

ti
,

and process the jobs in this order. We claim that this order minimizes the weighted
completion time.

8.2 Proof

We prove this by an exchange argument. Consider any optimal solution, and suppose
it does not use this order. Then the optimal solution must contain a pair of i and j
such that j is processed directly after i, but wi

ti
<

wj

tj
. We call such a pair (i, j) an

inversion. Before swapping this pair, the completion time after these two jobs will be
(assume the completion time before i is Cbefore):

@TSJ: stan43@gatech.edu 7



Textbook Greedy Problems

Cafter = wi(Cbefore + ti) + wj(Cbefore + ti + tj) (1)

Now if we swap i and j, we could get:

C ′
after = wj(Cbefore + tj) + wi(Cbefore + ti + tj) (2)

Then after rearrangement, we could get:

Cafter − C ′
after = wjti − witj (3)

Because we know that:

wi

ti
<

wj

tj
(4)

Therefore:

witj < wjti (5)

Cafter − C ′
after > 0 (6)

Therefore, this swap will actually decrease the final weighted completion time, which
will not worsen the solution.

Continuing in this way, we can eliminate all inversions without increasing the
weighted completion time. At the end of this process, we will have a schedule in
the order produced by greedy algorithm. Thus the greedy algorithm is optimal.

9 Problem 14

You’re working with a group of security consultants who are helping to monitor a
large computer system. There’s particular interest in keeping track of processes that
are labeled “sensitive.” Each such process has a designated start time and finish time,
and it runs continuously between these times; the consultants have a list of the planned
start and finish times of all sensitive processes that will be run that day.

As a simple first step, they’ve written a program called status check that, when
invoked, runs for a few seconds and records various pieces of logging information about
all the sensitive processes running on the system at that moment. (We’ll model each
invocation of status check as lasting for only this single point in time.) What they’d
like to do is to run status check as few times as possible during the day, but enough
that for each sensitive process P , status check is invoked at least once during the
execution of process P .

Give an efficient algorithm that, given the start and finish times of all the sensitive
processes, finds as small a set of times as possi- ble at which to invoke status check,
subject to the requirement that status check is invoked at least once during each
sensitive process P .

@TSJ: stan43@gatech.edu 8



Textbook Greedy Problems

9.1 Algorithm

The algorithm includes the following steps:

1. Organize all processes in a non-decreasing order of their finish times as a sequence
S

2. While some process is still not covered, insert a status check right at the finish
time of the first uncovered process in S

9.2 Proof

9.2.1 Define Solutions:

• Let G1, G2, ..., Gk be the time that the status check is inserted by the greedy
algorithm

• Let O1, O2, ..., Om be the time that the status check is inserted in an optimal
solution

We want to show that k ≤ m, the number of status check in the greedy solution is
at most the number of status check in the optimal solution.

9.2.2 Greedy Stays Ahead

We will show that at each step i, the greedy solution has covered at least as many
processes as the optimal solution. In other words, we need to prove that Gi ≥ Oi for all
i so that to prove greedy could cover at least many processes as the optimal solution.

Figure 3: Problem 14

9.2.3 Inductive Argument

For the base case:

• For the first uncovered job, greedy algorithm place the status-check at the latest
time that could cover this job, so G1 ≥ O1

@TSJ: stan43@gatech.edu 9



Textbook Greedy Problems

For the inductive step:

• Assume that for some i, the greedy algorithm has places the status check such
that Gj ≥ Oj for all j ≤ i

• Now consider the (i + 1)th status check. The greedy algorithm places Gi+1 at
the latest time that can cover the first uncovered job after Gi, and the optimal
solution place the status check at some time to cover this job.

• Then by the inductive hypothesis, Gi ≥ Oi, so Gi+1 ≥ Oi+1.

9.2.4 Conclusion

• Since Gi ≥ Oi for all i, the greedy algorithm stays ahead of the optimal solution
at each step.

• This implies that the greedy algorithm covers the jobs at least as efficiently as
the optimal solution (because it covers more time)

• Therefore, the total number of status check used by the greedy algorithm could
not be more than the number used by the optimal solution (k ≤ m)

• Therefore, greedy is optimal.

10 Problem 15

The manager of a large student union on campus comes to you with the following
problem. She’s in charge of a group of n students, each of whom is scheduled to work
one shift during the week. There are different jobs associated with these shifts (tending
the main desk, helping with package delivery, rebooting cranky information kiosks,
etc.), but we can view each shift as a single contiguous interval of time. There can be
multiple shifts going on at once.

She’s trying to choose a subset of these n students to form a super- vising committee
that she can meet with once a week. She considers such a committee to be complete
if, for every student not on the committee, that student’s shift overlaps (at least par-
tially) the shift of some student who is on the committee. In this way, each student’s
performance can be observed by at least one person who’s serving on the committee.

Give an efficient algorithm that takes the schedule of n shifts and produces a
complete supervising committee containing as few students as possible.

Example. Suppose n = 3, and the shifts are
Monday 4 p.m.–Monday 8 p.m.,
Monday 6 p.m.–Monday 10 p.m.,
Monday 9 p.m.–Monday 11 p.m.
Then the smallest complete supervising committee would consist of just the second

student, since the second shift overlaps both the first and the third.

@TSJ: stan43@gatech.edu 10



Textbook Greedy Problems

10.1 Algorithm

The algorithm steps include:

1. At all time, some intervals will be marked if they are already intersected and some
will not.

2. Sort all the intervals by their finish times in ascending order.

3. Look at the unmarked interval that ends earliest, and among the intervals that
intersect it, we choose the interval that ends the latest.

10.2 Proof

10.2.1 Define Solutions:

• Let G1, G2, ..., Gk be the end time of each interval selected by the greedy algorithm

• LetO1, O2, ..., Om be the end time that the intervals selected in an optimal solution

We want to show that k ≤ m, the number of committee intervals in the greedy
solution is at most the number of committee intervals in the optimal solution.

10.2.2 Greedy Stays Ahead

We will show that at each step i, the greedy solution has overlapped at least as
many processes as the optimal solution. In other words, we need to prove that Gi ≥ Oi

for all i so that to prove greedy could overlap at least as many intervals.

10.2.3 Inductive Argument

For the base case:

• For the first unoverlapped interval, greedy algorithm place the intersected interval
at the latest time that could overlap this job, so G1 ≥ O1

For the inductive step:

• Assume that for some i, the greedy algorithm has places the intersected interval
such that Gj ≥ Oj for all j ≤ i

• Now consider the (i + 1)th selected intersected interval. The greedy algorithm
places Gi+1 at the latest intersected interval that can cover the first unoverlapped
interval after Gi, and the optimal solution place the intersected interval at some
time to cover this interval.

• Then by the inductive hypothesis, Gi ≥ Oi, so Gi+1 ≥ Oi+1.

@TSJ: stan43@gatech.edu 11



Textbook Greedy Problems

10.2.4 Conclusion

• Since Gi ≥ Oi for all i, the greedy algorithm stays ahead of the optimal solution
at each step.

• This implies that the greedy algorithm overlaps the intervals at least as efficiently
as the optimal solution (because it covers more time)

• Therefore, the total number of selected intersected intervals used by the greedy
algorithm could not be more than the number used by the optimal solution (k ≤
m)

• Therefore, greedy is optimal.

11 Problem 17

Consider the following variation on the Interval Scheduling Problem. You have a
processor that can operate 24 hours a day, every day. People submit requests to run
daily jobs on the processor. Each such job comes with a start time and an end time;
if the job is accepted to run on the processor, it must run continuously, every day, for
the period between its start and end times. (Note that certain jobs can begin before
midnight and end after midnight; this makes for a type of situation different from what
we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as possible (regardless
of their length), subject to the constraint that the processor can run at most one job
at any given point in time. Provide an algorithm to do this with a running time that is
polynomial in n. You may assume for simplicity that no two jobs have the same start
or end times.

Example. Consider the following four jobs, specified by (start-time, end- time)
pairs.

(6 p.m., 6 a.m.), (9 p.m., 4 a.m.), (3 a.m., 2 p.m.), (1 p.m., 7 p.m.).
The optimal solution would be to pick the two jobs (9 p.m., 4 a.m.) and (1 p.m.,

7 p.m.), which can be scheduled without overlapping.

11.1 Algorithm

The algorithm steps include:

1. Sort all the intervals by their finish times in ascending order.

2. For each subsequent job Ji, if its start time is after the end time of the last selected
job, select it.

11.2 Proof

11.2.1 Define Solutions:

• Let G1, G2, ..., Gk be the end time of each interval selected by the greedy algorithm

@TSJ: stan43@gatech.edu 12



Textbook Greedy Problems

• LetO1, O2, ..., Om be the end time that the intervals selected in an optimal solution

We want to show that k ≥ m, the number of intervals in the greedy solution is at
least the number of intervals in the optimal solution.

11.2.2 Greedy Stays Ahead

We will show that at each step i, the greedy solution has included at least as many
jobs as the optimal solution. In other words, we need to prove that Gi ≤ Oi for all i so
that to prove greedy could include at least as many jobs than optimal.

11.2.3 Inductive Argument

For the base case:

• Among the unselected jobs, greedy algorithm select G1 with the earliest end time,
so G1 ≤ O1

For the inductive step:

• Assume that for some i, the greedy algorithm has selected the jobs such that
Gj ≤ Oj for all j ≤ i

• Now consider the (i+ 1)th selected jobs. The greedy algorithm selects Gi+1 with
the earliest end time after Gi, and the optimal solution selects the job at some
other time.

• Then by the inductive hypothesis, Gi ≤ Oi, so Gi+1 ≤ Oi+1.

11.2.4 Conclusion

• Since Gi ≤ Oi for all i, the greedy algorithm stays ahead of the optimal solution
at each step.

• This implies that the greedy algorithm selects the jobs at least as the optimal
solution (because it selects faster)

• Therefore, the total number of selected intersected jobs used by the greedy algo-
rithm could not be less than the number used by the optimal solution (k ≥ m)

• Therefore, greedy is optimal.

12 Problem 18

Your friends are planning an expedition to a small town deep in the Cana- dian
north next winter break. They’ve researched all the travel options and have drawn up
a directed graph whose nodes represent intermediate destinations and edges represent
the roads between them.

In the course of this, they’ve also learned that extreme weather causes roads in this
part of the world to become quite slow in the winter and may cause large travel delays.

@TSJ: stan43@gatech.edu 13



Textbook Greedy Problems

They’ve found an excellent travel Web site that can accurately predict how fast they’ll
be able to travel along the roads; however, the speed of travel depends on the time of
year. More precisely, the Web site answers queries of the following form: given an edge
e = (v, w) connecting two sites v and w, and given a proposed starting time t from
location v, the site will return a value fe(t), the predicted arrival time at w. The Web
site guarantees that fe(t) ≥ t for all edges e and all times t (you can’t travel backward
in time), and that fe(t) is a monotone increasing function of t (that is, you do not arrive
earlier by starting later). Other than that, the functions fe(t) may be arbitrary. For
example, in areas where the travel time does not vary with the season, we would have
fe(t) = t + ℓe, where ℓe is the time needed to travel from the beginning to the end of
edge e.

Your friends want to use the Web site to determine the fastest way to travel through
the directed graph from their starting point to their intended destination. (You should
assume that they start at time 0, and that all predictions made by the Web site are
completely correct.) Give a polynomial-time algorithm to do this, where we treat a
single query to the Web site (based on a specific edge e and a time t) as taking a single
computational step.

12.1 Algorithm

From the start node, always choose the next node as the node that could be achieved
in the shortest amount of time. (Dijkstra)

12.2 Proof

Using greedy algorithm to prove Dijkstra.

@TSJ: stan43@gatech.edu 14


	Problem 1
	Solution

	Problem 2
	Question a
	Question b

	Problem 3
	Solution

	Problem 4
	Solution

	Problem 5
	Greedy Algorithm
	Proof:
	Define Solutions:
	Greedy Stays Ahead:
	Inductive Argument
	Conclusion


	Problem 6
	Proof

	Problem 8
	Proof

	Problem 13
	Algorithm
	Proof

	Problem 14
	Algorithm
	Proof
	Define Solutions:
	Greedy Stays Ahead
	Inductive Argument
	Conclusion


	Problem 15
	Algorithm
	Proof
	Define Solutions:
	Greedy Stays Ahead
	Inductive Argument
	Conclusion


	Problem 17
	Algorithm
	Proof
	Define Solutions:
	Greedy Stays Ahead
	Inductive Argument
	Conclusion


	Problem 18
	Algorithm
	Proof


