
Bitonic Sorting

1 Parallel Merge Sort

1.1 Serial Merge Sort

The runtime for serial merge sort using divide and conquer is O(n log n), which has
been proved here.

1.2 Parallel Merge Sort

First explore some special cases:

1. Divide into 2 parts, when merge need to traverse n:

T (n, p) = T (
n

2
,
p

2
) +O(n) (1)

2. Divide into 4 parts, the first merge needs to traverse n
2
, the second merge needs

to traverse n:

T (n, p) = T (
n

4
,
p

4
) +O(

n

2
) +O(n) (2)

Now for p processors, divide into p parts:

T (n, p) = T (
n

p
, 1) +O(n+

n

2
+

n

4
+ ...+

n

p/2
) (3)

Recall the serial merge sort runtime:

T (n) = T (n, 1) = O(n log n) (4)

Therefore we have:

T (n, p) = O(
n

p
log

n

p
+ n) (5)

To use resources optimally, the number of processors should match the level of
parallelism that the algorithm can effectively exploit. For parallel merge sort, this
means having a number of processors that aligns with the depth of the recursion tree,
which is log n. Using more processors than this would not make the algorithm run
faster because the bottleneck becomes the merging process, which has to wait for all
sub-problems at a given level to be completed before it can proceed to the next level of
merging.

1

https://www.tsj.bio/HTML_Files/Academics/Computer_Science/Algorithm/Algorithm_RuntimeProof.pdf


HPC · Bitonic Sorting

2 Bitonic Sort

2.1 Overview

Let l1 and l2 be non-decreasing sorted lists, including:

l1 : x0, x1, ..., xn−1 (6)

l2 : y0, y1, ..., yn−1 (7)

Then we can generate a minimum array and a maximum array:

lmin : min(x0, yn−1),min(x1, yn−2), ...,min(xn−1, y0) (8)

lmax : max(x0, yn−1),max(x1, yn−2), ...,max(xn−1, y0) (9)

An example is shown below:

Figure 1: Bitonic Sort Example

Based on the observation, we can see that:

max(lmin) ≤ min(lmax) (10)

This could be proven. Assume the transition index as k in l1, then:

max(lmin) = max(xk, yn−k−2) (11)

And:

min(lmax) = min(xk+1, yn−k−1) (12)

The proof steps include:

1. Because l1 is sorted, so xk ≤ xk+1.

@TSJ: sijian@umich.edu 2



HPC · Bitonic Sorting

2. Because the transition is after k, so xk ≤ yn−k−1

3. Also because the transition is after k, so yn−k−2 ≤ xk+1

4. Because l2 is sorted, so yn−k−2 ≤ yn−k−1

Therefore, we can easily see that max(lmin) ≤ min(lmax).

2.2 Runtime

The runtime for bitonic sort is O(n log n
p
), and the proof is shown below:

Figure 2: Bitonic Sort Runtime Proof

2.3 Bitonic Sequence

We call x0, x1, ..., xn−1 as bitonic sequence if there is an index k such that (could be
one of the three):

1. x0, x1, ..., xk is non-decreasing and xk+1, xk+2, ..., xn−1 is non-increasing.

2. x0, x1, ..., xk is non-increasing and xk+1, xk+2, ..., xn−1 is non-decreasing.

3. There is a cyclical shift of the sequence that makes the first two situations true.

@TSJ: sijian@umich.edu 3



HPC · Bitonic Sorting

Figure 3: Bitonic Sequence

2.4 Bitonic Split

2.4.1 Definition

Bitonic split of a bitonic sequence l = x0, x1, ..., xn−1 is defined as decomposition
of l into:

lmin = min
(
x0, xn

2

)
,min

(
x1, xn

2+1

)
, . . . ,min

(
xn

2−1, xn−1

)
(13)

lmax = max
(
x0, xn

2

)
,max

(
x1, xn

2+1

)
, . . . ,max

(
xn

2−1, xn−1

)
(14)

2.4.2 Lemma

Let l be a bitonic sequence, and lmin and lmax result from the bitonic split, then we
have:

1. lmin and lmax are bitonic.

2. max(lmin) ≤ min(lmax)

The proof is shown below. if l is the type T1 bitonic sequence, then:

1. When x0 > xn
2
:

@TSJ: sijian@umich.edu 4



HPC · Bitonic Sorting

Figure 4: Case 2

2. When x0 > xn
2
:

Figure 5: Case 2

2.4.3 Sub-Lemma

Let l be a bitonic sequence and l′ be a cyclical shift. Assume bitonic split l into lmin

and lmax and bitonic split l′ into l′min and l′max, then we have:

1. l′min is a cyclical shift of lmin

2. l′max is a cyclical shift of lmax

So the cyclical shift does not change the bitonic nature of the sequence nor the
min(or max) element in the sequence.

2.5 Bitonic Merge

Bitonic merge means turning a bitonic sequence into a sorted sequence using
repeated bitonic split operations. The runtime could be expressed as:

BM(p, p) = O(log p) (15)

@TSJ: sijian@umich.edu 5



HPC · Bitonic Sorting

2.6 Bitonic Sort Example

Figure 6: Bitonic Sort Example

Assume we have processors p1, p2, ..., p8 and the corresponding value 7, 3, 4, 12, 20, 8, 6, 15.
Then we first divide these values into small sets with only 2 values. Then, we perform
bitonic merge in each of the set. This includes fisrt bitonic split the set and then
combine them in sorted way. This is done by putting the split result into a specific
processor order. Notice that here in the first set of 2, we choose ascending order,
which means p1 < p2, and in the second set of 2, we choose descending order,
which means p3 > p4. This is for the next level’s merging. Because now we have
only two values, bitonic split the set and put the results into specific order will be the
sorting:

[p1(7), p2(3)] → [lmin, lmax] → [p1(3), p1(7)] (16)

[p3(4), p4(12)] → [lmax, lmin] → [p3(12), p4(4)] (17)

Because in this level we have two values in each set, so BM(2, 2) = log2 2 = 1. Now
we move to the next level, with each set containing 4 values. Similar with before, in
the first set of 4, we choose ascending order, which means p1 < p2 < p3 < p4,
and in the second set of 4, we choose descending order, which means p5 >
p6 > p7 > p8. Now we have:

[p1(3), p2(7), p3(12), p4(4)] → [lmin, lmax] → [p1(3), p2(4), p3(12), p4(7)] (18)

[p5(8), p6(20), p7(15), p8(6)] → [lmax, lmin] → [p5(15), p6(20), p3(8), p4(4)] (19)

@TSJ: sijian@umich.edu 6



HPC · Bitonic Sorting

But this is not enough for sorting the first set of 4. We still need to divide it into
set of 2, then perform bitonic merge for it, for example:

[p3(12), p4(7)] → [lmin, lmax] → [p3(7), p4(12)] (20)

[p5(15), p6(20)] → [lmax, lmin] → [p5(20), p4(15)] (21)

This will take log2 4 = 2 steps. Similar with BM(8, 8), which will take 3 steps.
Therefore, the bitonic sort runtime (computation) could be expressed as:

BS(p, p) = BM(2, 2) +BM(4, 4) + ...BM(p, p) (22)

BS(p, p) = 1 + 2 + 3 + ...+ log p = O(log2 p) (23)

Because each step in this case need communications between processors, so the
communication time is O((τ + µ) log2 p).

If we have n > p, then we need to sort n/p local elements before doing the
bitonic sort, which will take O(n log n), so:

Computation T = O(
n

p
log

n

p
+

n

p
log2 p) (24)

For the communication time, recall that µ is the time taken to send each unit of
data. Here, each processor contains n/p data, and τ is the time for interaction between
each processor, so:

Communication T = O(τ log2 p+ µ
n

p
log2 p) (25)

@TSJ: sijian@umich.edu 7


	Parallel Merge Sort
	Serial Merge Sort
	Parallel Merge Sort

	Bitonic Sort
	Overview
	Runtime
	Bitonic Sequence
	Bitonic Split
	Definition
	Lemma
	Sub-Lemma

	Bitonic Merge
	Bitonic Sort Example


