
Communication Primitives

1 Broadcast

1.1 Defintion

A piece of data from one processor is sent to all other processors.

Figure 1: Broadcast

1.2 Arbitrary Cases

If p is not 2d, we can find p′ = 2d such that:

p′

2
< p < p′ (1)

And then run the code as if we have p′ processors and ignore the communications
to/from non-existing processors.

1.3 Runtime

For message size m, we have log p steps to finally broadcast to all processors and at
each level, in each processor the message size is still m. Therefore the runtime
could be expressed as:

1

HPC · Communication Primitives

TComm = θ(τ log p+ µm log p) (2)

2 Reduce

2.1 Definition

Reduce operation aggregates data from all processors and combines them into a
single processor.

Figure 2: Reduce

2.2 Runtime

Notice in this operation, data is aggregated, so the combine process will not
increase the size. Therefore, the runtime could be expressed as:

TComm = θ(τ log p+ µm log p) (3)

Reduce also has computation time. Although the addition operation will only take
O(1), but we have log p levels, so the final computation time is:

Tcomp = θ(log p) (4)

@TSJ: sijian@umich.edu 2

HPC · Communication Primitives

3 AllReduce

3.1 Defintion

AllReduce operation aggregates data from all processors and broadcast to all pro-
cessors.

Figure 3: AllReduce

3.2 Runtime

Similar with Reduce, the runtime could be expressed as:

TComm = θ(τ log p+ µm log p) (5)

4 Scan

4.1 Definition

Scan, also known as the prefix sum operation, is a fundamental communication prim-
itive in parallel computing, serving a unique role in both shared and distributed memory
systems. The scan operation takes a sequence of data distributed across processes and
computes partial aggregates of these data elements, distributing the intermediate
results back to each process. Unlike reduce, which aggregates all data into a single
result, scan provides each process with an intermediate aggregate that includes its own
and all preceding data points in the sequence.

@TSJ: sijian@umich.edu 3

HPC · Communication Primitives

Figure 4: Scan

4.2 Runtime

In this case, we only care about the communication time. Same as Reduce, the sum
operation will not increase the size of the data, so:

TComm = θ(τ log p+ µm log p) (6)

5 Gather

5.1 Definition

Collect data from all processors and assemble the data into a single processor.

Figure 5: Gather

@TSJ: sijian@umich.edu 4

HPC · Communication Primitives

5.2 Runtime

Notice that here the data size in each processor increases at each level, so the
previous runtime expression could not be used.

The data sending communication time is:

θ(

log(p)−1∑
i=0

(τ + µm · 2i)) = θ(µm · (1 + 2 + ...+
p

2
)) ≈ θ(µmp) (7)

Therefore the total communication time is:

TComm = θ(τ log p+ µmp) (8)

6 AllGather

6.1 Definition

Collect data from all processors, assemble the data and broadcast into all proces-
sors.

Figure 6: AllGather

6.2 Runtime

Same as Gather:

TComm = θ(τ log p+ µmp) (9)

@TSJ: sijian@umich.edu 5

HPC · Communication Primitives

7 Scatter

7.1 Definition

Scatter is a key communication primitive in parallel computing, which performs the
opposite operation of gather. In scatter, a single data source from one process, often
the root process, is divided into segments and distributed among all processes in a
communicator or group.

Figure 7: Scatter

7.2 Runtime

Assume the root processor has data size as pm, assume p = 2d. Then at each level,
the data size in each processor is divided by 2. The data sending runtime will be:

θ(µmp · (1
2
+

1

4
+ ...+

1

p
)) ≈ θ(µmp) (10)

So the total communication time is:

TComm = θ(τ log p+ µmp) (11)

8 All to All

8.1 Definition

All to All communication in parallel computing refers to a communication pat-
tern where every process (or node) sends data to, and receives data from, all other
processes in the computing system.

8.2 Arbitrary Permutations

The arbitrary permutation could be implemented in this way:

@TSJ: sijian@umich.edu 6

HPC · Communication Primitives

Figure 8: Arbitrary Permutation Implementation 1

But this is not efficient algorithm because every time same processor is working,
which is actually a serial communication. The runtime for this implementation is
O(τp2 + µmp2). Another implementation is:

Figure 9: Arbitrary Permutation Implementation 2

Now all the processors could work at the same time. The runtime for this imple-
mentation is O(τp+ µmp).

8.3 Hypercubic Permutations

Figure 10: Hypercubic Permutation Implementation

At each step, the processors at one side send the messages for the other side to the
other side. More details:

@TSJ: sijian@umich.edu 7

HPC · Communication Primitives

Figure 11: Hypercubic Permutation Step by Step

For this permutation, the runtime will be O(τ log p+ µmp log p).

9 Many to Many

9.1 Definition

In a ”Many to Many” communication scenario, a selected subset of processors (not
necessarily all) sends data to and receives data from another selected subset of proces-
sors.

Some notations for this operation.

1. mij: message from Pi to Pj

2. |mij|: size of the message

3. max(i)
∑

j |mij| ≤ Si: this represents the sending message limit

4. max(j)
∑

i |mij| ≤ Rj: this represents the receiving message limit

Figure 12: Many to Many Notations

Assume we have 4 processors, and in processor P2 we have messages want to send
to P0, P1 and P3, with different size:

Figure 13: Initial Condition

Now, we divide each message into 4 pieces for each processor:

@TSJ: sijian@umich.edu 8

HPC · Communication Primitives

Figure 14: Division

Now we can use All to All operation to make sure the message size in each processor
are the same, with max message size ≤ S

p
:

Figure 15: Combination

Then, route the message fragments to actual destinations and assemble,
using All to All. The max message size now is ≤ R

p
.

Recall the runtime for All to All is O(τp + µmp). Notice that we need to set a
boundary label to let the processor know the size of the box, this will take O(p). So for
stage 1, the runtime is O(τp+µ(S

p
+p)p). For stage 2, the runtime is O(τp+µ(R

p
+p)p).

The total runtime is O(τp+ µ(R + S + p2)).

@TSJ: sijian@umich.edu 9

	Broadcast
	Defintion
	Arbitrary Cases
	Runtime

	Reduce
	Definition
	Runtime

	AllReduce
	Defintion
	Runtime

	Scan
	Definition
	Runtime

	Gather
	Definition
	Runtime

	AllGather
	Definition
	Runtime

	Scatter
	Definition
	Runtime

	All to All
	Definition
	Arbitrary Permutations
	Hypercubic Permutations

	Many to Many
	Definition

