
Dense Matrix Algorithms

1 Matrix-Vector Multiplication

1.1 Serial Situation

Suppose we need to multiply a dense n×n matrix A with an n×1 vector x to yield
n× 1 result vector y, so:

Ax = y (1)

Then the serial algorithm will require n2 multiplications and additions, so the run-
time is O(n2).

1.2 1D Partitioning

Figure 1: 1D Partitioning

1.2.1 When n = p

Now matrix A is partitioned among p processors, each processor stores complete
row of the matrix. Vector x is also partitioned, each process owns one element of x.
The algorithm includes the following steps:

1. Step 1: Use AllGather to distribute all of x to each processor. Recall the com-
munication primitive knowledge:

Tcomm = O(τ log n+ µn) (2)

1

HPC · Dense Matrix Algorithms

2. Step 2: Now each processor will compute:

y[i] =
n−1∑
j=0

A[i, j] · x[j] (3)

The computation runtime will be O(n)

1.2.2 When n > p

Now each processor stores n/p complete rows of the matrix A, and n/p elements of
the vector x

The algorithm includes the following steps:

1. Step 1: Distribute all of x vector to each processor. This will use AllGather
operation among p processors, including messages of size n/p. Therefore:

Tcomm = O(τ log p+ µ · n
p
· p) = O(τ log p+ µn) (4)

2. Step 2: Then on each processor, n/p local dot products on vectors of length n.
So:

Tcomp = O(
n2

p
) (5)

1.3 2D Partitioning

1.3.1 p = n2

Suppose n× n matrix is partitioned among n2 processors, so each processor owns a
single element. In addition, we have n× 1 vector x distributed in the last column of n
processors.

@TSJ: sijian@umich.edu 2

HPC · Dense Matrix Algorithms

Figure 2: 2D Partition Steps

For step a:

1. The n× n matrix A is divided into
√
p×√

p blocks. At this case,
√
p = n. Each

processor Pij holds (n/
√
p) messages.

2. The vector x is also partitioned and distributed along the diagonal processors Pii

because each processor requires the corresponding element of vector x to multiply
with its block of matrix A.

For step b:

1. After aligning the vector x on the diagonal, a one-to-all broadcast is performed
within each column of processors.

2. Each diagonal processor Pii sends its portion of the vector to all other processors
in the same column. This step ensures that every processor in a column has the
necessary part of the vector x to proceed with the multiplication with its local
block of the matrix A.

For step c:

1. Each processor multiplies its block of the matrix A with the corresponding ele-
ments of vector x to compute a partial result of the resulting vector y.

2. Once all processors have computed their partial results, an all-to-one reduction
is performed within each row of processors to sum up the partial results. This
reduction step is necessary to construct the elements of the resulting vector y as
each processor in a row holds a part of the sum needed for a single element of y.

For step d:

@TSJ: sijian@umich.edu 3

HPC · Dense Matrix Algorithms

1. After the reduction step, each end of row processor will have a complete element
of the resulting vector y. This is ready for final distribution.

All the steps could be summarized as:

1. Align vector along the main diagonal: one-to-one communication

2. Broadcast vector element to n processors in column: one-to-all broadcast

3. Local multiplication

4. Sum partial y values in each row: all-to-one reduction

Recall that the expressions of the communication time for one-to-all broadcast
and all-to-one reduction are both O(τ log p + µm log p). Here p is should be the
number of processors in row and column, they are both n. Each processor only has one
element, so m = 1. The local multiplication does not need communication, and the
one-to-one communication takes O(τ + µ). Therefore:

TComm = O(τ log n+ µ log n) (6)

For the computation time, we need to add each partial results to get single element
in y using all-to-one reduction. For each level, it requires 1 computation, and it has
log n levels in this case. Therefore:

TComp = O(log n) (7)

1.3.2 p < n2

Figure 3: p less than n2 case

Basically the same as the general form in the last subsection. Now:

1. Each processor owns an n√
p
× n√

p
block of the matrix

2. The vector is distributed in portions of n√
p
elements in the last processor-column

3. The message sizes for the alignment, broadcast, and reduction are all n√
p
. For the

reduction, after local computation it will just be a n√
p
vector.

@TSJ: sijian@umich.edu 4

HPC · Dense Matrix Algorithms

4. The local computation is a product of an n√
p
× n√

p
submatrix with a vector of

length n√
p

The algorithm is the same as previous case, but different runtime.

1. To align vector along the main diagonal, we use one to one communication,
the runtime is O(τ + µ n√

p
)

2. Broadcast vector elements to
√
p processors in column, this will take O(τ log

√
p+

µ n√
p
log

√
p)

3. Local multiplication will take O(n
2

p
)

4. Sum partial y values in each row using reduce in
√
p processors, this will take

O(τ log
√
p+ µ n√

p
log

√
p)

Therefore, the communication time at this case will be:

TComm = O(τ log
√
p+ µ

n
√
p
log

√
p) (8)

And the computation will be:

TComp = O(
n2

p
) (9)

Therefore the total runtime will be:

T = O(
n2

p
+ (τ + µ

n
√
p
) log

√
p) = O(

n2

p
+

n
√
p
log

√
p) (10)

To achieve maximum efficiency, we have:

O(n2)

p ·O(n
2

p + n√
p log

√
p)

= 1 (11)

O(n2)

O(n2 + n
√
p log

√
p)

= 1 (12)

O(n
√
p log

√
p) = O(n2) (13)

O(
√
p log

√
p) = O(n) (14)

Therefore, we get:

p = O(
n2

log2 n
) (15)

So this algorithm is efficient up to O(n2

log2 n
) processors.

@TSJ: sijian@umich.edu 5

HPC · Dense Matrix Algorithms

2 Matrix-Matrix Multiplication

2.1 Serial Situation

Suppose we need to multiply a dense n × n matrix A with an n × n matrix B to
yield n× n result matrix C, so:

AB = C (16)

The implementation is shown below:

Figure 4: Serial Matrix-Matrix Multiplication

Then the serial algorithm will require n3 multiplications and additions, so the run-
time is O(n3).

2.2 Normal Block Algorithm

2.2.1 Algorithm

In parallel case, we can use block operations to decompose the problem:

1. Divide n× n matrix A can be recomposed into q × q array of blocks

2. Ai,j(0 ≤ i, j ≤ q) will be used for block notation, each block contains (n
q
× n

q
)

submatrix.

3. With this decomposition, we need to perform q3 matrix multiplications, each
involving (n

q
× n

q
) matrices, as shown below.

Figure 5: Matrix-Matrix Multiplication Example

@TSJ: sijian@umich.edu 6

HPC · Dense Matrix Algorithms

The algorithm details are shown below:

1. Suppose now the decomposition is done, matrices A and B partitioned into p
blocks Aij and Bij(0 ≤ i, j ≤ √

p), each block has a n√
p
× n√

p
submatrix

2. Processor Pij initially stores Aij and Bij. In order to compute submatrix Cij

requires all Aik and Bkj, where 0 ≤ k <
√
p.

3. This is done by AllGather operation, gather blocks of A along rows and B along
columns. Notice that the function of AllGather is assembling, not adding the
matrix.

4. After AllGather, the local multiplication will be applied, and Cij will be calcu-
lated.

2.2.2 Runtime Analysis

1. First we need to do the AllGather operations in row and column, within
√
p pro-

cessors. Each processor has n√
p
× n√

p
= n2

p
elements. Therefore the communication

time is O(τ log
√
p+ µn2

p

√
p).

2. For each processor, the computation requires
√
p (number of processors in row)

multiplications of two (n√
p
× n√

p
) sized submatrices, this will require O(

√
p ×

(n√
p
)3) = O(n

3

p
).

3. Notice that here each processor already stores one row in A and one column in B,
so the local computation could just get the corresponding value (same position)
in C.

4. Therefore the total runtime is O(n
3

p
+ τ log

√
p+ µn2

p

√
p)

5. This will be efficient for p = O(n2)

6. This algorithm has a very high memory requirement because each processor need
to store the whole row or column’s message. So it is not memory optimal.

2.3 Cannon’s Algorithm

2.3.1 Algorithm

1. First align the blocks depending on their positions in the matrix. Suppose we
have matrix A and matrix B as shown below:

@TSJ: sijian@umich.edu 7

HPC · Dense Matrix Algorithms

Figure 6: Matrix A and Matrix B

Notice that for each row and column, the shifting distances are different. After
the alignment process, Pi,j will have Ai,(j+1)mod

√
p and B(i+j)mod

√
p,j. After the

alignment, the matrices are shown below, and we calculate the C matrix using
the formula:

Cij = Aij ·Bij (17)

@TSJ: sijian@umich.edu 8

HPC · Dense Matrix Algorithms

Figure 7: After Alignment

2. Then do the 1 left shift in matrix A and 1 up shift in matrix B, and calculate C2:

@TSJ: sijian@umich.edu 9

HPC · Dense Matrix Algorithms

Figure 8: Shifting process

3. Then repeat these steps for
√
p− 1 times, and the final C matrix will be:

C = C1 + C2 + C3 + C4 (18)

2.3.2 Runtime Analysis

1. In the alignment step, the maximum distance for a block to shift is
√
p − 1, so

two shift operations require O(2∗ (τ(√p−1)+µn2

p
(
√
p−1))) = O(τ

√
p+µn2

p

√
p)

2. The compute and shift phase has
√
p − 1 steps. In each step, the computation

requires the multiplications of two n√
p
× n√

p
submatrices, so the computation time

is O((
√
p− 1)× (n√

p
)3) = O(n

3

p
)

3. The communication time for
√
p−1 steps shifts will take O(τ(

√
p−1)+µn2

p
(
√
p−

1)) = O(τ
√
p+ µn2

p

√
p)

4. So the final total time is O(n
3

p
+ τ

√
p + µ n2

√
p
). Notice that this runtime is larger

than the block algorithm, but Cannon’s algorithm is more memory optimal.

@TSJ: sijian@umich.edu 10

	Matrix-Vector Multiplication
	Serial Situation
	1D Partitioning
	When n = p
	When n > p

	2D Partitioning
	p = n2
	p < n2

	Matrix-Matrix Multiplication
	Serial Situation
	Normal Block Algorithm
	Algorithm
	Runtime Analysis

	Cannon's Algorithm
	Algorithm
	Runtime Analysis

