
Goal for Parallel Algorithm Design

1 Algorithm Performance Measurement

1.1 Runtime

Runtime is the best way to measure an algorithm’s performance.

1. Sequential runtime: T (n), where n is the problem size. The sequential runtime
is just the same as normal algorithm runtime, has upper, lower and average bound.

2. Parallel runtime: T (n, p), where p is the number of processors.

1.2 Speedup

The speedup of an algorithm is defined as:

Speedup =
Runtime of the best sequential algorithm

Runtime of the parallel algorithm
(1)

In math notation:

S(p) =
T (n, 1)

T (n, p)
(2)

Notice that T (n, 1) is the runtime of the best sequential algorithm and not the
running time of the parallel algorithm when run on one processor. Instead, we choose
to solve the problem using sequential computer.

One of the important Lemma is that:

S(p) ≤ p (3)

This can be proven by contradiction method. Suppose:

S(p) > p (4)

Then:

T (n, 1)

T (n, p)
> p (5)

T (n, 1) > p · T (n, p) (6)

1

HPC · Goal for Parallel Algorithm Design

This contradicts the work law:

T (n, 1) ≤ p · T (n, p) (7)

The work of a computation executed by p processors is the total number of prim-
itive operations that the processors perform. Ignoring communication overhead from
synchronizing the processors, this is equal to the time used to run the computation on
a single processor, which is T (n, 1).

In some instances, the speedup obtained is greater than the number of processors.
This speedup is termed superlinear speedup.

1.3 Parallel Efficiency

The parallel efficiency is defined as:

Efficiency =
Work done by the best sequential alg

Work done by the parallel alg
(8)

It describes how well the processors are utilized by the algorithm. In math notation:

E(p) =
T (n, 1)

p · T (n, p)
=

S(p)

p
≤ 1 (9)

2 Goal for Design

What should be the aim when designing a parallel algorithm? The answer is either
speedup or efficiency.

2.1 Case Study

Suppose we have a 3-loop naive sequential algorithm, the runtime is:

T (n, 1) = O(n3) (10)

Now we have two parallel algorithms:

1. T (n, n3) = O(log n)

2. T (n, n2) = O(n)

For the algorithm 1, the speedup will be:

S(n3) =
T (n, 1)

T (n, n3)
=

O(n3)

O(log n)
= O(

n3

log n
) (11)

And the efficiency will be:

E(n3) =
T (n, 1)

n3 · T (n, n3)
=

O(n3)

n3 ·O(log n)
= O(

1

log n
) (12)

@TSJ: sijian@umich.edu 2

HPC · Goal for Parallel Algorithm Design

For the algorithm 2, the speedup will be:

S(n2) =
T (n, 1)

T (n, n2)
=

O(n3)

O(n)
= O(n2) (13)

And the efficiency will be:

E(n2) =
T (n, 1)

n2 · T (n, n2)
=

O(n3)

n2 ·O(n)
= O(1) (14)

In a summary:

Algorithm Speedup Efficiency

Algorithm 1 O(n3

logn
) O(1

logn
)

Algorithm 2 O(n2) O(1)

Table 1: Algorithm Comparison

Notice here the O notation for speedup and efficiency does not represent the time
complexity anymore, it represents and magnitude. Therefore, the larger O is, the more
speedup/efficiency the algorithm is.

Recall the Complexity Comparison:

Figure 1: Complexity Comparison

So we know that, if we want to maximize speedup, we should choose algorithm
1. If we want to maximize efficiency, we should choose algorithm 2.

2.2 Brent’s Lemma

Let T (n, p1) be the run-time of a parallel algorithm designed to run on p1 processors.
The same algorithm can be run on p2 < p1 processors without loss of efficiency
(E(p2) ≥ E(p1)), which is called efficiency scaling.

Suppose we run the previous algorithm using p2 processors, let each processor sim-
ulate ⌈p1

p2
⌉ processors to ensure the number of processors is an integer. Here ⌈p1

p2
⌉ is the

ceiling notation, for example ⌈0.5⌉ = 1. Therefore:

@TSJ: sijian@umich.edu 3

https://www.geeksforgeeks.org/what-is-logarithmic-time-complexity/

HPC · Goal for Parallel Algorithm Design

T (n, p2) = ⌈p1
p2
⌉T (n, p1) (15)

E(p2) =
T (n, 1)

p2 · ⌈p1p2⌉T (n, p1)
(16)

Based on the definition of ceiling:

⌈p1
p2
⌉ ≤ p1

p2
+ 1 (17)

Therefore:

RHS ≥ T (n, 1)

p2 · (p1p2 + 1)T (n, p1)
=

T (n, 1)

(p1 + p2)T (n, p1)
(18)

Recall that:

E(p1) =
T (n, 1)

p1 · T (n, p1)
(19)

So we can prove that:

E(p2) ≥ E(p1) (20)

2.3 Goals of PAD

There are two main goals of PAD, including:

1. Speed Max: Design algorithm to minimize T (n, p) using the smallest possible
value p. In other words, to reach a certain speed, we need at least p number of
processors.

2. Efficiency Max: Design algorithm to maximize E(p) where p is the largest
possible number of processors. In other words, to reach a certain efficiency, we
could not have more than p number of processors.

Assume two algorithms:

1. A1: designed for speed and uses p1 processors

2. A2: designed for efficiency and uses a maximum of p2 processors

The conclusion is that:

p1 > p2 (21)

This could be proven using contradiction method. Suppose p1 < p2, as shown below:

@TSJ: sijian@umich.edu 4

HPC · Goal for Parallel Algorithm Design

Figure 2: Contradiction Hypothesis

Notice that using Brent’s Lemma, now A1 could be as efficient as A2 because now
p1 < p2. With the same efficiency, also because p1 < p2, A2 will run faster than A1.
This contradicts A1 is designed for speed and A2 is designed for efficiency. Therefore
the conclusion is proven.

In summary, A1 will be less efficient than A2, but will be faster than A2.

Figure 3: Less processors case

If there are less processors, like p < p2, because A2 is more efficient than A1, based
on Brent’s lemma, p scaled from p2 will be more efficient than p scaled from p1, so at
the fixed processors A2 will be faster for less processors.

3 Scalability

3.1 Fixed-time scalability

One of the biggest concern is that we want to increase the problem size but retain
the same runtime. Still use the matrix multiplication, the sequential runtime is:

T (n, 1) = O(n3) (22)

3.1.1 Efficient algorithm

And efficient algorithm is defined as an algorithm if we increase the problem size
and corresponding scale of processors, the runtime will be the same. Assume we have

@TSJ: sijian@umich.edu 5

HPC · Goal for Parallel Algorithm Design

the algorithm:

T (n, n3) = O(1) (23)

The scaling of this algorithm could be expressed as:

T (n, p) = O(
n3

p
) (24)

If we increase the problem size by 2, the work will increase by 8 (n3), so if we use 8
processors:

T (2n, 8p) = O(
8n3

8p
) = O(

n3

p
) (25)

3.1.2 Inefficient Algorithm

Not all the algorithm are that efficient. Assume we have an algorithm:

T (n, n3) = O(log n) (26)

And the scaling will be:

T (n, p) = O(
n3 log n

p
) (27)

Similarly, if we increase the size by 2:

T (2n, 8p) = O(
8n3 log 2n

8p
) = O(

n3 log 2n

p
) (28)

Therefore, the runtime increases, so this algorithm is not efficient algorithm.

3.1.3 Selection from Efficient Algorithms

Assume we have two algorithms:

1. A2: T (n, n
2) = O(n), p ≤ n2

2. A3: T (n, n) = O(n2), p ≤ n2

We want to choose the better algorithm between this. The scaling of A2 will be:

T (n, p) = O(
n2

p
· n) (29)

And the scaling of A3 will be:

T (n, p) = O(
n

p
· n2) (30)

@TSJ: sijian@umich.edu 6

HPC · Goal for Parallel Algorithm Design

For A2, if we double the problem size n, we can quadruple the number of processors,
or double the runtime.

For A3, if we double the problem size n, we can double the number of processors,
or quadruple the runtime.

Figure 4: Comparison of Efficient Algorithms

Here p3 and p2 will be the limit for each algorithm. Assume the initial conditions:

n = 1000, p = 100, p3 = 1000, p2 = 1000000 (31)

If we double the problem size, and use 8 times processors, then we have:

n = 2000, p = 800, p3 = 2000, p2 = 4000000 (32)

Here it still satisfies:

p < p3 < p2 (33)

Therefore both algorithms work. However, if we double again, we have:

n = 4000, p = 6400, p3 = 4000, p2 = 16000000 (34)

Now the relations are:

p3 < p < p2 (35)

Therefore we could only choose A2 now.

3.2 Find the required number of processors

The other concern is how to calculate the required number of processors. Here are
two examples:

3.2.1 Example 1

Assume we have a parallel algorithm:

T (n, p) = Θ(
n

p
+ log p) (36)

Now we want tomaximize the speed, which means we want to find p tominimize
T (n, p), so we take the derivative:

d

dp
(
n

p
+ log p) = 0 (37)

@TSJ: sijian@umich.edu 7

HPC · Goal for Parallel Algorithm Design

− n

p2
+

1

p
= 0 (38)

p = n (39)

If we require the efficiency to be Θ(1), then:

E(p) =
T (n, 1)

pT (n, p)
=

T (n, 1)

p(np + log p)
= Θ(1) (40)

n

n+ p log p
= Θ(1) (41)

p log p = O(n) (42)

Take a guess:

p = O(
n

log n
) ≈ c

n

log n
(43)

Could be proven:

O(
n

log n
· log n

log n
) = O(

n

log n
· (log n− log log n)) (44)

The magnitude of log log n comparing with log n is pretty small and could be ignored.
Therefore:

O(
n

log n
· log n) = O(n) (45)

3.2.2 Example 2

Now we assume the algorithm as:

T (n, 1) = Θ(n2) (46)

and the scaling as:

T (n, p) = Θ(
n2

p
+
√
n), p ≤ n2 (47)

For speed, we choose p = n2 this time. Now if we want to maintain Θ(1) efficiency:

E(p) =
Θ(n2)

p · (n2

p +
√
n)

= Θ(1) (48)

n2

n2 + p
√
n
= Θ(1) (49)

p
√
n = O(n2) (50)

@TSJ: sijian@umich.edu 8

HPC · Goal for Parallel Algorithm Design

p = O(n
√
n) (51)

@TSJ: sijian@umich.edu 9

	Algorithm Performance Measurement
	Runtime
	Speedup
	Parallel Efficiency

	Goal for Design
	Case Study
	Brent's Lemma
	Goals of PAD

	Scalability
	Fixed-time scalability
	Efficient algorithm
	Inefficient Algorithm
	Selection from Efficient Algorithms

	Find the required number of processors
	Example 1
	Example 2

