
Message Passing Interface (MPI)

1 Introduction

MPI stands for Message Passing Interface. It is a standardized and portable message-
passing system designed to function on a wide variety of parallel computing architec-
tures.

2 MPI Implementation

Every MPI implementation must provide 3 components (here only C/C++):

1. MPI library: with mpi.h header, the library to write parallel programs

2. Compiler wrapper: mpicc or mpicxx, to compile the programs

3. Runtime system: mpirun, to run the program

Figure 1: MPI Structure

Figure 2: MPI Compiling and Running Commands

1



HPC · Message Passing Interface (MPI)

3 Communicator

A communicator is a fundamental concept that defines a group of processes that can
communicate with each other. Communicators provide a context for communication
and control the scope of message passing. Some characteristics:

1. In a communicator, each process has a unique rank

2. Ranks are integers from 0 to p − 1, where p is the total number of processes in
the communicator

3.1 Special Communicators

1. MPI COMM WORLD: is a communicator that includes all the processes in
an MPI program. When an MPI program starts, it automatically creates this
communicator. It is typically used for global communications – like broadcast,
where a message from one process is sent to all processes, or global reduction
operations where data from all processes are combined in some way.

2. MPI COMM SELF:is a special type of communicator that contains only one
process - the process itself. This communicator is used for self-communication.
While this might sound unusual, it can be useful in situations where a uniform
interface for communication is needed, but sometimes the communication might
be with oneself.

3.2 Communicator Operations

1. MPI Comm size: determine the size of a communicator

2. MPI Comm rank: determine the rank of a communicator

3. MPI Comm split: used for partitioning a group of processes in an existing
communicator into several disjoint subcommunicators.

4. MPI Comm create: used to create a new communicator from an existing group
of processes.

5. MPI Comm free: used to free up a communicator that was created using MPI
communicator creation functions like MPI Comm create or MPI Comm split

@TSJ: sijian@umich.edu 2



HPC · Message Passing Interface (MPI)

Figure 3: MPI Operations Example

4 Point to Point Communication

4.1 Overview

Point to point communication means sending messages from one process to another.
This process always involves sending and receiving processes, including source and
destination, as shown below:

Figure 4: Overview

Every message consists of a Message Envelope and Message Data, as shown
below:

@TSJ: sijian@umich.edu 3



HPC · Message Passing Interface (MPI)

Figure 5: Message Envelope and Data

4.2 Message Data

The message data for each message is described by:

1. Memory buffer storing data: void* buf

2. Number of objects in the buffer: int count

3. Data type of the data in the buffer: MPI Datatype: type

Notice here MPI definesMPI Datatype for all built in C/C++ types. The message
data is described as a block of memory, where buf is a pointer to where the data
lies in memory, count and type define how large the memory block is:

Figure 6: Message Data in Memory

4.3 Message Envelope

The message envelope contains:

1. Source rank: int src

2. Destination rank: int dest

3. Tag: int tag, integer used to distinguish messages

4. Communicator: MPI Comm comm, universe of communication

@TSJ: sijian@umich.edu 4



HPC · Message Passing Interface (MPI)

4.4 MPI Send/MPI Recv

Figure 7: Send/Receive Functions

Figure 8: Send/Receive Example

5 Message Matching

5.1 Overview

Each send operation must be matched by a corresponding receive operation. This
matching is via the envelope, including:

1. Communicator

2. Source rank

3. Tag

@TSJ: sijian@umich.edu 5



HPC · Message Passing Interface (MPI)

4. Not by type or size

5.2 Blocking

Another concept is blocking in parallel computing. Blocking refers to a situation
where the execution of certain processes or tasks is delayed due to the need to syn-
chronize or communicate with other processes. An MPI Recv operation blocks until
a matching message is received. An MPI Send operation may block until the message
has been received by the destination process. An example is shown below:

Figure 9: Blocking Example

5.3 ANY

We can use ANY in MPI Recv function to receive any message from any processor.
And we can use MPI Status structure to check envelope of the received message.

Figure 10: ANY Example 1

@TSJ: sijian@umich.edu 6



HPC · Message Passing Interface (MPI)

Figure 11: ANY Example 2

5.4 Message Ordering

There are three main rules for message ordering:

1. If messages originate from different processors, the order in which they are
received is arbitrary.

2. If messages have different tags, the order in which they are received is arbitrary

3. Only if two or more messages have the same source AND the same tag, their
order is preserved. They are received in the same order in which they were sent.

Suppose we have the processors in cyclic dependencies:

@TSJ: sijian@umich.edu 7



HPC · Message Passing Interface (MPI)

Figure 12: Cyclic Dependencies

Now we want to send messages according to right shift permutation. Recall the
formula:

i → (i+ 1)mod p (1)

Then the blocking will cause the issue:

Figure 13: Blocking Issue

Notice that here using MPI ANY SOURCE is valid, because in the sending
function the destination is already specified. However, in cyclic dependencies, all the
processors need to send the message, the receive function may not be called at all.
Therefore in this case, we need non-blocking communication, which is realized by
functions MPI Isend and MPI Irecv:

@TSJ: sijian@umich.edu 8

https://www.tsj.bio/HTML_Files/Academics/Computer_Science/HPC/HPC_Parallel_Model.pdf


HPC · Message Passing Interface (MPI)

Figure 14: Isend and Irecv funtions

And two other functions could be used to check for communication status:

Figure 15: Status Checking

MPI Wait will block till the send/receive operation is completed. MPI Test
returns a flag of either 0 or 1 depending on whether the send/receive operation is
completed. Now the cyclic dependencies could be implemented as:

Figure 16: Correct Example

@TSJ: sijian@umich.edu 9


	Introduction
	MPI Implementation
	Communicator
	Special Communicators
	Communicator Operations

	Point to Point Communication
	Overview
	Message Data
	Message Envelope
	MPI_Send/MPI_Recv

	Message Matching
	Overview
	Blocking
	ANY
	Message Ordering


