
2D Dynamical System

1 Introduction

Sometimes, 1D dynamic system could not satisfy the requirements of the problem.
Instead, we can use 2D dynamic system to express the problem. For example, the state
vector will be:

x⃗(t) =

[
x1(t)
x2(t)

]
(1)

The vector function could be:

f⃗(x⃗) =

[
f1(x1, x2)
f2(x1, x2)

]
(2)

Then the dynamics system could be expressed as:

dx⃗

dt
= f⃗(x⃗) (3)

2 Examples

2.1 Pendulum

One of the most classical problem is the pendulum problem. Assume the mass on
a rigid bar is attached to a pivot, and it swings back and forth.

Figure 1: Pendulum
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Assume the angular velocity as ω, then apply the Newton’s Law:

d

dt

[
θ
ω

]
=

[
ω

− g
L sin θ

]
(4)

Which is in the form of:
dx⃗

dt
= f⃗(x⃗) (5)

2.2 Two Interacting Drivers

Assume two drivers on the road trying to match the speed, with the speed limit as
ω:

Figure 2: Two Interacting Drivers

Here, we define the distance between 2 cars as:

ϕ = x2 − x1 (6)

And we define the interaction strength as:

g(ϕ)


> 0 if ϕ > 0

= 0 if ϕ = 0

< 0 if ϕ < 0

(7)

And the relation functions are:

dx1
dt

= ω + εg(x2 − x1) (8)

dx2
dt

= ω − εg(x2 − x1) (9)

Therefore, we can rewrite the system as:

dϕ

dt
= −2εg(ϕ) (10)
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Now if we try to find the fixed point, then:

−2εg(ϕ) = 0 (11)

From the previous relation we know ϕ = 0, which means the drivers line up. Also:

−2εg(ϕ)


< 0 if ϕ > 0

= 0 if ϕ = 0

> 0 if ϕ < 0

(12)

Therefore we know this fixed point is stable. We call this system exhibits synchro-
nization. Synchronization refers to the coordination of different processes, models, or
simulations to ensure that they operate together in a consistent and timely manner. In
this case, no matter how ϕ changes, the system is stable.

2.3 Racetrack

Suppose two cars running on a circle track:

Figure 3: Race Track

Here, we define ω as the angular speed, and:

ϕ = θ2 − θ1 (13)

Similar with the previous case:

dϕ

dt
= −2εg(ϕ) (14)
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But now we have constraint on g(ϕ). It needs to be angular, and also:

g(ϕ) = g(ϕ+ 2π) (15)

2.4 Predator-Prey

Another classic model is the predator-prey model. We have the following parame-
ters:

1. The population of sheep: x1(t)

2. The population of wolves: x2(t)

3. Sheep population increases in absence of wolves, rate r1 > 0

4. Wolves die in absence of sheep, rate r2 > 0

5. a1, a2 > 0 are the interaction coefficients

Therefore, for the sheep:

dx1
dt

= r1x1 − a1x1x2 (16)

Then for the wolves:

dx2
dt

= −r2x2 + a2x1x2 (17)

Using the rescaling method:

x1 = αx̂1 (18)

x2 = βx̂2 (19)

t = τ t̂ (20)

Therefore we have:

α

τ

dx̂1

dt̂
= r1αx̂1 − a1αβx̂1x̂2 (21)

β

τ

dx̂2

dt̂
= −r2βx̂2 + a2αβx̂1x̂2 (22)

Then we choose the parameters in a smart way:

τ =
1

r1
(23)

β =
r1
a1

(24)
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α =
r1
a2

(25)

And also define a new parameter as:

r =
r2
r1

(26)

Finally we have:

dx̂1

dt̂
= x̂1 − x̂1x̂2 (27)

dx̂2

dt̂
= −γx̂2 + x̂1x̂2 (28)

Covert back into 1-parameter system:

d

dt

[
x1
x2

]
=

[
x1 − x1x2

−rx2 + x1x2

]
(29)

Now we try to find the fixed points. First we want to find the x1 Nullcline, which
is just:

dx1
dt

= 0 (30)

So, we have:

x∗1 = x∗1x
∗
2 (31)

x∗
1 = 0 or x∗

2 = 1 (32)

Notice that they will not happen at the same time. Then we find the x2

Nullcline (the intersection points between two Nullclines are the fix points):

dx2
dt

= 0 (33)

rx∗2 = x∗1x
∗
2 (34)

When x∗
1 = 0, we have:

rx∗2 = 0, x∗2 = 0 (35)

When x∗
2 = 1, we have:

x∗1 = r (36)

Therefore the fixed points will be [0, 0]T and [r, 1]T . The phase diagram is shown
below:
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Figure 4: Phase Diagram
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