
2D Linearization

1 Procedures

Recall the 2D dynamic system:

d

dt

[
x1(t)
x2(t)

]
=

[
f1(x1, x2)
f2(x1, x2)

]
(1)

dx⃗

dt
= f⃗(x⃗) (2)

First, we need to find the fixed points so that:

f⃗(x⃗∗) = 0 (3)

Then, we assume a small vector:

s⃗ =

[
s1(t)
s2(t)

]
(4)

So for the fixed point, we have:

x⃗(t) = x⃗∗ + s⃗ (5)

Then using the multivariate Taylor Expansion, we can linearize the equation at
x⃗∗ (dropping the higher term):

f⃗(x⃗∗ + s⃗) ≈ f⃗(x⃗∗) + Jf(x⃗
∗) · s⃗ (6)

f⃗(s⃗) ≈ Jf(x⃗
∗) · s⃗ (7)

Where Jf (x⃗
∗) is the Jacobian of f at x⃗∗.

2 Jacobian Matrix

Now we take a closer look at the Jacobian. Recall that:

f⃗(x⃗) =

[
f1(x1, x2)
f2(x1, x2)

]
(8)

Then the Jacobian matrix is defined as:
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Jf(x⃗) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(9)

2.1 Eigenvalues Calculation

Now we are interested in calculating the eigenvalues. The procedure is simple:

det(A− λI) = 0 (10)

Assume:

A =

[
a b
c d

]
(11)

Then:

A− λI =

[
a− λ b
c d− λ

]
(12)

det() = (a− λ)(d− λ)− bc = 0 (13)

Then we can get the eigenvectors:[
a b

c d

] [
v1
v2

]
= λ

[
v1
v2

]
(14)

Then use the equation to find the eigen pair:

Av = λv (15)

2.2 Diagonal Jacobian

Recall the predator-prey model:

d

dt

[
x1
x2

]
=

[
x1 − x1x2

−rx2 + x1x2

]
(16)

Therefore, we can get the Jacobian matrix as:

Jf(x⃗) =

[
1−x2 −x1
x2 x1 − r

]
(17)

First we try the fixed point [0, 0]T (notice that the Jacobian matrix only has meaning
at fixed point, only this way could get the eigenvalue for the system):

x⃗∗ =

[
0
0

]
(18)
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Then we have:

J∗ = Jf(x⃗
∗) =

[
1 0
0 −r

]
(19)

Which is a diagonal Jacobian, the terms in diagonal direction are just eigenval-
ues at this fixed point. Plug in back to previous equation:

d

dt

[
s1
s2

]
=

[
1 0
0 −r

] [
s1
s2

]
=

[
λ1 0
0 λ2

] [
s1
s2

]
(20)

Which means:

ds1
dt

= λ1s1,
ds2
dt

= λ2s2 (21)

Or in other words:[
s1
s2

]
= s⃗(0)

[
exp(λ1t)
exp(λ2t)

]
=

[
exp(t)

exp(−rt)

]
(22)

Which means, when close to [0, 0]T , x1 is exponentially blowing-up, and x2 is
exponentially decaying:

Figure 1: Diagonal Jacobian

2.3 Antidiagonal Jacobian

Similarly, when x⃗∗ = [r, 1]T , we have:

J∗ =

[
0 −r
1 0

]
(23)

Which is an antidiagonal Jacobian. Therefore we have:

d

dt

[
s1
s2

]
=

[
0 −r

1 0

] [
s2
s1

]
(24)
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Now we can find the eigenvalues at this fixed point:

J∗ − λI =

[
0 −r
1 0

]
−

[
λ 0
0 λ

]
=

[
−λ −r
1 −λ

]
(25)

Then, using the determinant formula:

det

[
−λ −r
1 −λ

]
= λ2 + r = 0 (26)

Solving this equation:

λ1 = i
√
r, λ2 = −i

√
r (27)

3 Eigenvalues and Phase Diagram

Eigenvalues’ real and imaginary parts will represent the system’s stability, and also
will affect the final phase diagram.

3.1 1D System, 1D Phase Diagram

3.1.1 Stability

Recall the previous content, in 1D the solution has the general form:

x(t) = exp (λ∗t) (28)

The sign of λ∗ will determines stability (here, we assume time is a positive number):

1. λ∗ < 0: the exponential is close to 0, stable

2. λ∗ > 0: the exponential is increasing rapidly, unstable

3. λ∗ = 0: inconclusive, need to check second derivative

Notice that 1D system has only one eigenvalue, and this value must be real
value. The complex eigenvalues indicate oscillatory behavior due to the interac-
tion between multiple dimensions. This does not exist in 1D, so the eigenvalue
must be real.

But in general, we could calculate the derivative to determine the stability. For a
system:

dx

dt
= f(x) (29)

If f ′(x) > 0, then the system is unstable; if f ′(x) < 0, then the system is stable; if
f ′(x) = 0, then the system is semistable.
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3.1.2 Phase Diagram

Figure 2: 1D Phase Diagram

In 1D, the phase diagram is just a line, but it may have multiple fixed points. The
stability of each fixed point will be different.

3.2 2D System, 2D Phase Diagram

3.2.1 Complex Value Form

For the general 2D case, we need to assume:

s⃗(t) = exp (λt)v⃗ (30)

Recall the equation:

ds⃗

dt
= J∗s⃗ (31)

Therefore we have:

λ exp (λt)v⃗ = J∗ exp (λt)v⃗ (32)

λv⃗ = J∗v⃗ (33)

Then, solution (λ, v⃗) is an eigenpair of J∗. For an n × n matrix, there are up
tp n distinct eigenpairs. Eigenpairs could be complex-valued! They will occur in
complex-conjugate pairs:

λ1 = α + iβ, v⃗1 = a+ ib (34)

• If λ1, λ2 are distinct, the solution could be written as a linear combination:

s⃗(t) = a1 exp (λ1t)v⃗1 + a2 exp (λ2t)v⃗2 (35)

• If λ1 and λ2 are real and λ1 > λ2, then we will have dominance, which means
the solution will tend toward v⃗1:

s⃗(t) = exp (λ1t)v⃗1[a1v⃗1 + a2 exp ((λ2 − λ1)t)v⃗2] (36)

When t → ∞,

s⃗(t) = exp (λ1t) · a1v⃗1 (37)
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• If λ1 and λ2 are complex-valued, then we have:

exp (λt) = exp (αt) exp (iβt) = exp (αt)︸ ︷︷ ︸
Stability

[cos (βt) + i sin (βt)︸ ︷︷ ︸
Oscillations

] (38)

3.2.2 Stability and Oscillations

The imaginary part β of the complex eigenvalues determines the frequency and
direction of the oscillations in the phase space. It is also the reason why spiral
will show in the phase diagram.

The sign of β influences the direction of rotation in the phase plane:{
β < 0 : Clockwise Spiral

β > 0 : Counterclockwise Spiral
(39)

If the two eigenvalues have same magnitudes but different sign in imaginary part,
at this time direction of rotation is determined by the Jacobian matrix (same trend as
β): {

bc < 0 : Clockwise

bc > 0 : Counterclockwise
(40)

The stability is mainly controlled by the real part of the eigenvalues (α). The
dependence is shown below (with β):

α < 0 : Stable Spiral

α > 0 : Unstable Spiral

α = 0 : Circle or Elliptical

(41)

3.2.3 Impacts of Eigenvectors

Eigenvectors are also very important for the 2D phase diagram. For Saddle node,
each eigenvalue has a corresponding eigenvector that defines the direction of the
stable and unstable manifolds (axis). The graph is shown in next section.

• Eigenvector of positive eigenvalue: direction of the unstable axis.

• Eigenvector of negative eigenvalue: direction of the stable axis.

Here is a detailed instruction to find the eigenvectors. Suppose we have a Jacobian
matrix at the fixed point:

J∗ =

[
a b
c d

]
(42)

Assume the eigenvectors are λ1 and λ2, then for λ1, we need to solve:

(J − λ1I)v1 = 0 (43)
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[
a− λ1 b

c d− λ1

] [
x1
x2

]
= 0 (44)

Now we can find the relation between x1 and x2:

(a− λ1)x1 + bx2 = 0 (45)

After the normalization, we will get the eigenvector. For example, if:

x2 = −2x1 (46)

Then the eigenvector is (could be scaled):

v1 =

[
1
−2

]
(47)

3.2.4 Phase Diagram

We can find some special nodes in phase diagram using eigenvalues and eigenvectors.
In this section, all the discussion is about a single fixed point. Assume for this single
point, there are eigenvalues λ1 and λ2, and eigenvectors v1 and v2.

1. α1, α2 < 0, β1 = β2 = 0: Both eigenvalues are real and negative, and this node
will be a stable node (Sink). Notice that if both eigenvalues are real, the curves
could still be distorted, except the case α1 = α2:
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Figure 3: Sink node with same magnitude eigenvalues

When α1 ̸= α2, then two eigenvalues will have interference. For example (fixed
point as origin):

dx

dt
=

[
−1 0
0 −4

]
x (48)

The eigenvalues and eigenvectors are:

λ1 = −1, v1 =

[
1
0

]
(49)

λ2 = −4, v2 =

[
0
1

]
(50)

Hence the general solution is given by:

x(t) = c1e
−t

[
1
0

]
+ c2e

−4t

[
0
1

]
(51)
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Notice here there are 3 variables: x1, x2, t, that’s why we could get 2D phase
diagram. The x-axis represents x1 and y-axis represents x2. In the phase diagram,
each curve is a trajectory line, and the initial point (t = 0) could be any
point in the phase diagram, the trajectory line will determine where
this point will go in t > 0.

Figure 4: Sink node with different magnitude eigenvalues

In this example, we observe that:

|λ2| = 4 > 1 = |λ1| (52)

Therefore, the straight line solution c2e
−4t

[
0
1

]
will have more strength, and all

the curves are more distorted to that direction (more like that direction).

2. α1, α2 > 0, β1 = β2 = 0: Both eigenvalues are real and positive, and this node
will be a unstable node (Source). This discussion is similar with sink, so when
α1 = α2:
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Figure 5: Source node with same magnitude eigenvalues

When α1 ̸= α2, assume we have (fixed point as origin):

dx

dt
=

[
2 2
1 3

]
x (53)

The eigenvalues and eigenvectors are:

λ1 = 4, v1 =

[
1
1

]
(54)

λ2 = 1, v2 =

[
−2
1

]
(55)

Hence the general solution is given by:

x(t) = c1e
4t

[
1
1

]
+ c2e

t

[
−2
1

]
(56)

Based on the observation:
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|λ1| = 4 > 1 = |λ2| (57)

Therefore, the straight line solution c1e
4t

[
1
1

]
will have more strength, and all the

curves are more distorted to that direction (more like that direction).

Figure 6: Source node with different magnitude eigenvalues

3. α1 > 0, α2 < 0, β1 = β2 = 0 Both eigenvalues are real, one eigenvalue is positive,
and the other is negative, this node is called Saddle Node, and it is unstable.
The unstable and stable axis are determined by the eigenvectors.

Figure 7: Saddle Node

4. β1 = β2 = 0, α1 = α2: Eigenvalues are purely real and equal, this node is called
Degenerate Node (Improper Node), stable if negative, unstable if positive.
Notice there are other constraints of this point.

• ∆ = (Tr[A])2 − 4det[A] = 0

• The A matrix is not diagonalizable. This is the actual reason for degen-
eration.
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For example, if we have:

dx

dt
=

[
1 0
0 1

]
x (58)

Then:

∆ = (1 + 1)2 − 4 · 1 = 0 (59)

However, because this matrix is diagonalizable, this node is not a degenerate
point, it is a source node (mentioned before). Instead, if we have:

dx

dt
=

[
1 1
0 1

]
x (60)

Then this system satisfies two requirements, there is a degenerate point:

Figure 8: Degenerate Node
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Figure 9: Unstable Degenerate Node

Figure 10: Stable Degenerate Node

5. β1, β2 ̸= 0, α1, α2 < 0: Eigenvalues are complex conjugates with negative real
parts, then this node is called Stable Spiral Node (including both β cases).

Figure 11: Stable Spiral Node

6. β1, β2 ̸= 0, α1, α2 > 0: Eigenvalues are complex conjugates with positive real
parts, then this node is called Unstable Spiral Node (include both β cases).
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Figure 12: Unstable Spiral Node

7. β1, β2 ̸= 0, α1 = α2 = 0: Eigenvalues are purely imaginary, complex conjugates
with zero real parts, then this node is called Center Node (include both bc
cases). Normally at this time, we have β1 = −β2. The center node could be circle
or elliptical, dependent on the state variables.

Figure 13: Center Node

@TSJ: sijian@umich.edu 14


	Procedures
	Jacobian Matrix
	Eigenvalues Calculation
	Diagonal Jacobian
	Antidiagonal Jacobian

	Eigenvalues and Phase Diagram
	1D System, 1D Phase Diagram
	Stability
	Phase Diagram

	2D System, 2D Phase Diagram
	Complex Value Form
	Stability and Oscillations
	Impacts of Eigenvectors
	Phase Diagram



