
Discrete Event Simulation

1 Introduction

1.1 Overview

Discrete event simulation (DES) is a modeling technique used to simulate the be-
havior and performance of a system as a discrete sequence of events over time. Each
event occurs at a specific point in time and marks a change in the state of the system.
Key aspects of DES include:

1. State Transitions (Events): The fundamental units of the simulation, repre-
senting changes in the system’s state.

2. State Variables: These variables represent the current state of the system. They
change in response to events.

3. Event List: A list that keeps track of all scheduled events, ordered by their
occurrence time. The simulation progresses by processing events in chronological
order.

4. Simulation Clock: A virtual clock that keeps track of the current time in the
simulation. The clock advances to the time of the next event.

5. Randomness: Many elements in DES are modeled as random variables to reflect
real-world variability, such as arrival times, service times, and failure rates.

1.2 Categories

Based on these definitions, the DES could be categorized into 3 sets:

• Event Oriented: In event-oriented simulation, the focus is on the events that
change the state of the system. The simulation progresses by processing events in
chronological order. It is efficient for systems with events that occur at irregular
intervals. The focus is on event scheduling and execution. The key characteristics
include:

1. Event List: A list of scheduled events is maintained, typically sorted by
time.

2. Event Execution: The simulation clock advances to the time of the next
event, and the event is executed.

1



Modeling and Simulations · Discrete Event Simulation

3. State Changes: Events cause changes to the system’s state.

4. Scheduling New Events: Events may schedule new events to occur at
future times.

• Process Oriented: Process-oriented simulation focuses on the lifecycle of enti-
ties within the system, where each entity follows a specific process or sequence of
activities. The key characteristics include:

1. Processes: Each type of entity has a defined process it follows, typically
modeled as a sequence of activities or steps.

2. Coroutines: Entities are often implemented as coroutines or threads that
simulate the passage of time by yielding control at specific points

3. State Changes: The system state is updated as entities progress through
their processes.

• Activity Scanning: Activity scanning involves checking the conditions for var-
ious activities at regular time intervals, executing any activities whose conditions
are met. The key characteristics include:

1. Activities and Conditions: The model consists of a set of activities,
each with associated conditions that determine when the activity can be
performed.

2. Fixed Time Steps: The simulation clock advances in fixed time steps, and
at each step, all activities are scanned to see if their conditions are met.

3. State Changes: If conditions for an activity are met, the activity is exe-
cuted, and the system state is updated.

2 Department Store Case Study

Suppose there are 3 shopping areas and 3 service desks for payment. When the
customers enter the store, they will do the following stuffs:

• Browse and select items in a shopping area.

• Pay at service desk.

• Can browse and select items in another area, or

• Can leave after payment at any desk.

The example of the events for 3 customers is shown below:

@TSJ: sijian@umich.edu 2



Modeling and Simulations · Discrete Event Simulation

Figure 1: Events Overview

2.1 Event Oriented

If we choose event oriented simulation, then the diagrams will become:

Figure 2: Event Oriented

2.2 Process Oriented

If we choose process oriented simulation, then the diagrams will become:

@TSJ: sijian@umich.edu 3



Modeling and Simulations · Discrete Event Simulation

Figure 3: Process Oriented

2.3 Activity Scanning

If we choose activity scanning simulation, then the diagrams will become:

Figure 4: Activity Scanning

@TSJ: sijian@umich.edu 4



Modeling and Simulations · Discrete Event Simulation

3 Airport Traffic Case Study

Figure 5: Airport Traffic

Key system behaviors:

• Only one plane at a time can use the runway to land.

• Planes arrive & waiting to land, landing & sit, and then depart

• Once cleared to land, the time to land is some constant

• The time on the ground waiting to depart is constant

• Ignore departure queueing

3.1 Event-Oriented

Figure 6: Airport Traffic, Event Oriented

In event-oriented simulation:

@TSJ: sijian@umich.edu 5



Modeling and Simulations · Discrete Event Simulation

• Execution is a sequence of event computations

• Events are processed in timestamp order

• Unprocessed events are stored in a future event list

There are several differences between Time-stepped and Event-driven simula-
tions. For time-stepped simulations:

1. Discretize time into steps in same step, e.g. t = 0, 1, 2, 3

2. Update all state variables concurrently at each step

3. Time advances one-step-at-a-time

And for event-driven simulations:

1. Time can be continuous

2. Only update state variables when events occur

3. Time advances from one event to the next, which may be irregular.

3.2 Event Oriented Implementation

Before the implementation, we need to define several variables. First, the time
constants:

• R: time runway is used for each landing aircraft (constant)

• G: time required on the ground before departing (constant)

State variables:

• now: current simulation time

• in air: number of aircraft landing or waiting to land

• on ground: number of landed aircraft

• runway free: Boolean, true if runway available

And the events:

• arrived

• landed

• departed

@TSJ: sijian@umich.edu 6



Modeling and Simulations · Discrete Event Simulation

The interrelation could be shown below:

Figure 7: Interrelations

And a possible scenario is shown below:

Figure 8: Event Scenario

Now we can start to implement the events:

Figure 9: Arrival Event Implementation

@TSJ: sijian@umich.edu 7



Modeling and Simulations · Discrete Event Simulation

Figure 10: Landing Event Implementation

Figure 11: Departure Event Implementation

A data structure is needed to store events that have been scheduled, but not yet
processed, which is called Future Event List (FEL). The required data structure is
called a priority queue. One possible implementation is shown below:

Figure 12: Future Event List Implementation

@TSJ: sijian@umich.edu 8


	Introduction
	Overview
	Categories

	Department Store Case Study
	Event Oriented
	Process Oriented
	Activity Scanning

	Airport Traffic Case Study
	Event-Oriented
	Event Oriented Implementation


