
ODE and PDE

1 Overview

An ODE (ordinary differential equations) is an equation involving a function of a
single independent variable and its derivatives. A PDE (partial differential equa-
tions) is an equation involving a function of multiple independent variables and its
partial derivatives.

2 Solutions of ODEs

2.1 Euler’s method (Forward Euler)

2.1.1 Derivation

Suppose we have the following equations:

dx

dt
= f(x) (1)

x = x(t) (2)

Recall the Taylor Expansion:

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 +
f ′′′(x0)

3!
(x− x0)

3 + · · · (3)

Now replace f by x, x by t+ h, x0 by t:

x(t+ h) = x(t) + h · dx
dt

+O(h2) (4)

Therefore, for small h:

dx

dt
=

x(t+ h)− x(t)

h
(5)

The local error is O(h2), and the accumulated error over N = 1
h
steps will be O(h),

so this method is 1st order approx. Now assume the input as:

t0, t1, ..., tn : x0 = x(t0) (6)

And the output as (use hat to represent prediction):

1

Modeling and Simulations · ODE and PDE

x̂1, ..., x̂n : x̂k = x(tk) (7)

Here, k is defined from 0 to n− 1, so we have:

hk = tk+1 − tk (8)

x̂k+1 = x̂k + hk · f(x̂k) (9)

2.1.2 Error Analysis

To judge whether this solution is good, we need to perform error analysis. The error
consists of 3 parts:

• Rounding Error: the real values are stored using a finite number of digits, so
the floating point arithmetic is not exact. This will affect discretization limits.

• Local Error: the difference between exact solution xk and the computed solution
x̂k. Recall that for Euler’s method, we have:

x̂k+1 = x̂k + hk · f(x̂k) (10)

Now we assume x̂k is exact, so that x̂k = xk, then we have:

x̂k+1 = xk + hk · f(xk) (11)

xk+1 − x̂k+1 = xk+1 − xk − hkf(xk)

= hkf(xk) +O(h2
k

df(xk)

dt
)− hkf(xk)

= O(h2
k

df(xk)

dt
)

• Global Error: also start from Taylor’s theorem, we have:

xk+1 − xk = hkf(xk) +O(h2
k

df(xk)

dt
) (12)

and Euler’s method:

x̂k+1 = x̂k + hk · f(x̂k) (13)

Therefore we have:

xk+1 − x̂k+1 = xk − x̂k + hk(fk − f̂k) +O(h2
k

df(xk)

dt
) (14)

@TSJ: sijian@umich.edu 2

Modeling and Simulations · ODE and PDE

Recall the mean value theorem:

f(b)− f(a)

b− a
=

df

dx

∣∣∣∣
x=c

(15)

So that we have:

xk+1 − x̂k+1 = xk − x̂k + hk
df

dx

∣∣∣∣
x=c

· (xk − x̂k) +O(h2
k

df(xk)

dt
) (16)

xk+1 − x̂k+1 = (1 + hk
df

dx

∣∣∣∣
x=c

)(xk − x̂k) +O(h2
k

df(xk)

dt
) (17)

Here:

1. (1 + hk
df
dx

∣∣
x=c

) is the amplification factor. Amplification occurs if |(1 +
hk

df
dx

∣∣
x=c

)| > 1. If so, we say the algorithm is unstable, because error tends

to magnify. However, the algorithm will be stable if −2 < hk
df
dx

∣∣
x=c

< 0.

2. O(h2
k
df(xk)

dt
) is the local error.

3. xk − x̂k is the global error at tk.

4. xk+1 − x̂k+1 is the global error at tk+1.

For a 2D system, Dxf = df
dx

will be a Jacobian matrix, and stability will depend
on eigenvalues of I + hkJ having a modulus < 1. The modulus of eigenvalues
refers to the absolute value or magnitude of the eigenvalues.

2.2 Backward Euler Method

The expression of backward Euler method is shown below:

x̂k+1 = x̂k + hkf(x̂k+1) (18)

Now we do the error analysis. Recall the classical taylor expansion, replace f by x,
x by t, x0 by t+ h, then:

x(t) = x(t+ h)− h · dx
dt

|t+h +O(h2) (19)

Therefore, this algorithm is first order accurate, with O(h2) as local error. With
this, we can write the true solution as:

xk+1 = xk + hkfk+1 +O(h2
k) (20)

Therefore, the global error could be expressed as:

xk+1 − x̂k+1 = xk − x̂k + hk(fk+1 − f̂k+1) +O(h2
k) (21)

@TSJ: sijian@umich.edu 3

Modeling and Simulations · ODE and PDE

Similarly, using mean value theorem:

xk+1 − x̂k+1 = xk − x̂k + hk
df

dx

∣∣∣∣
x=c

· (xk+1 − x̂k+1) +O(h2
k) (22)

(1− hk
df

dx

∣∣∣∣
x=c

)(xk+1 − x̂k+1) = xk − x̂k +O(h2
k) (23)

The amplification factor analysis is the same as Euler method. The algorithm is
unstable when |(1− hk

df
dx

∣∣
x=c

)| > 1, that’s when hk
df
dx

∣∣
x=c

< 0 or hk
df
dx

∣∣
x=c

> 2

2.3 Second-Order Runge-Kutta Method (Midpoint Method)

2.3.1 Definition

Assume an ODE as dy
dt

= f(t, y), with initial condition y(t0) = y0 and a step size h.
Then, for n = 0, 1, 2, ...:

1. Calculate k1 = hf(tn, yn).

2. Calculate ŷmid = ŷn+ 1
2
= yn +

1
2
k1

3. Calculate k̂2 = hf(tn +
h
2
, ŷmid)

4. Update ŷn+1 = yn + k̂2

5. Update tn+1 = tn + h

2.3.2 Second Order Proof

For each step of the algorithm:

1. Based on the definition of f (here, we assume yn is exact, so k1 is also exact):

k1 = hf(tn, yn) = hy′(tn) (24)

2. Now plug this into the midpoint expression:

ŷmid = ŷn+ 1
2
= yn +

h

2
y′(tn) (25)

Recall the taylor expansion, the exact value is (this may not be used, just
showing):

yn+ 1
2
= y(tn +

1

2
h) = y(tn) +

h

2
· dy
dt

+O(h2) (26)

@TSJ: sijian@umich.edu 4

Modeling and Simulations · ODE and PDE

3. The calculated k2 could be expressed as:

k̂2 = hf(tn +
h

2
, ŷmid) = f(tn +

h

2
, yn +

h

2
y′(tn)) (27)

Because f is a function of both y and t, the approximation will be:

f(tn +
h

2
, ŷmid) = f(tn, yn) +

h

2
f ′(tn, yn) = y′(tn) +

h

2
(
∂f

∂t
+

∂f

∂y
y′(tn)) (28)

Therefore:

k̂2 = h[y′(tn) +
h

2
(
∂f

∂t
+

∂f

∂y
y′(tn))] (29)

4. Finally, the calculated yn+1:

ŷn+1 = yn + k̂2 = yn + hy′(tn) +
h2

2
(
∂f

∂t
+

∂f

∂y
y′(tn)) (30)

Recall the taylor expansion of y, we have:

yn+1 = y(tn + h) = y(tn) + hy′(tn) +
h

2
y′′(tn) +O(h3) (31)

Notice that:

f(tn, yn) = y′(tn) (32)

So we have:

y′′(tn) =
∂f

∂t
+

∂f

∂y
y′(tn) (33)

Therefore, the local truncation error of RK2 method is (at each step):

yn+1 − ŷn+1 = O(h3) (34)

And the global truncation error which is accumulated over N = 1
h
steps will be

O(h2). Therefore, RK2 method is in second-order.

@TSJ: sijian@umich.edu 5

Modeling and Simulations · ODE and PDE

3 Macroscopic Models of Traffic Flow (PDE)

3.1 Overview

Figure 1: Traffic Flow

In this problem, we want to use PDE system with respect to space (x) and time (t)
to model the traffic flow. Some basic definitions include:

• v(x, t) : speed of vehicles at (x, t), with unit as [distance]/[time]

• ρ(x, t) : density of vehicles, with unit as [#cars]/[distance]

• f(x, t) : traffic flow, with unit as [#cars]/[time]

Let ρmax be the bumper-to-bumper traffic density and vmax, then we have:

0 ≤ ρ(x, t) ≤ ρmax (35)

0 ≤ v(x, t) ≤ vmax (36)

3.2 Model 0: Homogeneous Flow

Assume there is no dependence on (x, t), then we have:

ρ(x, t) = ρ̄, v(x, t) = v̄, f(x, t) = f̄ (37)

And assume the final time as τ , so the total number of cars will be:

#cars =
[#cars]

[dist]
· [dist]

[time]
· time = ρ̄v̄τ (38)

So the number of cars passing a point at τ will be:

ρ̄v̄τ

τ
= ρ̄v̄ = f̄ (39)

@TSJ: sijian@umich.edu 6

Modeling and Simulations · ODE and PDE

3.3 Model 1: Speed Depends on Density

Based on intuition, if there are more cars, the speed will decrease. In other words,
ρ → 0 when v → vmax and ρ → ρmax when v → 0. Assume this relation is linear then:

vρ = vmax(1−
ρ

ρmax

) (40)

Figure 2: Linear Relation

So the traffic flow will be:

f = f(ρ) = ρ · v(ρ) = vmaxρ(1−
ρ

ρmax
) (41)

In order to simplify the model, we could use non-dimensional form:

ρ̂ =
ρ

ρmax
(42)

f̂ =
f

ρmaxvmax
(43)

Then change the previous expression to:

ρmaxvmaxf̂ = vmaxρmaxρ̂(1− ρ̂) (44)

f̂(ρ̂) = ρ̂(1− ρ̂) (45)

Now we can define the non-dimensional v as:

v̂ =
f̂

ρ̂
= 1− ρ̂ (46)

Therefore, the max flow occurs when ρ̂ = 1
2
, and so:

f̂(
1

2
) =

1

4
(47)

f ≤ ρmaxvmax

4
(48)

@TSJ: sijian@umich.edu 7

Modeling and Simulations · ODE and PDE

3.4 Model 2: Inhomogeneous Flow

In this model, density varies in space ρ = ρ(x, t). Let n(t) be the number of cars
between x = a and x = b at time t, then:

dn

dt
=

∫ b

a

∂ρ

∂t
dx (49)

Also assume no on/off ramps, so no cars are lost. Then the change in n(t) is also
the difference in flow at the endpoints:

dn

dt
= f(a, t)− f(b, t) = −

∫ b

a

∂f

∂x
dx (50)

Combine these two equations we have:

dn

dt
=

∫ b

a

(
∂ρ

∂t
+

∂f

∂x
)dx = 0 (51)

Because this equation should fit the general case, so must be true for all a, b, t, so
we could get the continuity equation:

∂ρ

∂t
+

∂f

∂x
= 0 (52)

Assume drivers react instantaneously to changes in density, so:

f = f(ρ) (53)

4 Solutions of PDEs

4.1 Discretization

First we need to discretize space and time uniformly:

xi ∈ {0, l, 2l, . . .} (54)

tj ∈ {0, h, 2h, . . .} (55)

4.2 First Order Forward Finite Difference Approximation (Up-
wind)

4.2.1 Definition

The first order forward finite difference approximation could (also called upwind
method) be expressed as:

∂f

∂x
≈ f(x+ l, t)− f(x, t)

l
=

f(xi+1, tj)− f(xi, tj)

l
(56)

@TSJ: sijian@umich.edu 8

Modeling and Simulations · ODE and PDE

∂ρ

∂t
≈ ρ(x, t+ h)− ρ(x, t)

h
=

ρ(xi, tj+1)− ρ(xi, tj)

h
(57)

Here, we define:

fi,j = f(xi, tj), ρi,j = ρ(xi, tj) (58)

Therefore, the continuity equation could be expressed as:

ρi,j+1 − ρi,j
h

+
fi+1,j − fi,j

l
= 0 (59)

And the logistic flow model could be expressed as:

fi,j = vmaxρi,j(1−
ρi,j
ρmax

) (60)

Now plug the logistic flow model into the continuity equation:

ρi,j+1 − ρi,j
h

+
vmax

l

[
ρi+1,j

(
1− ρi+1,j

ρmax

)
− ρi,j

(
1− ρi,j

ρmax

)]
(61)

Rearrange, we could get the density solution:

ρi,j+1 = ρi,j −
h

l
vmax

[
ρi+1,j

(
1− ρi+1,j

ρmax

)
− ρi,j

(
1− ρi,j

ρmax

)]
(62)

4.2.2 Accuracy and Stability Analysis

Rearrange the continuity equation, we get:

∂ρ

∂t
= −∂f

∂x
= −df

dρ

∂ρ

∂x
(63)

If we consider a simpler, linear system (ρ as u):

∂u

∂t
= c

∂u

∂x
(64)

Here we define:

u = u(x, t), u0(x) = u(x, 0) (65)

Assume the traveling wave moving at velocity c, then:

u(x, t) = u0(x+ ct) (66)

This could be proved. Assume y = x+ ct, then:

∂u

∂t
=

∂

∂t
u0(x+ ct) =

du0

dy

∣∣∣∣
y=x+ct

· ∂y
∂t

= c
du0

dy

∣∣∣∣
y=x+ct

(67)

c
du

dx
= c

∂

∂x
u0(x+ ct) = c

du0

dy

∣∣∣∣
y=x+ct

· ∂y
∂x

= c
du0

dy

∣∣∣∣
y=x+ct

(68)

@TSJ: sijian@umich.edu 9

Modeling and Simulations · ODE and PDE

By intuition, the stability depends on time step (h), spatial step (s) and wave speed
(c). Consider the true solution at some point x, then after j time steps, it moves a
distance cjh. For stability, we need to ensure that information does not travel
more than one spatial grid cell in one time step. In math:

cjh ≤ js (69)

c
h

s
≤ 1 (70)

Here we define ch
s
as theCFL (Courant-Friedrichs-Lewy) number, or Courant

number. This is a necessary condition for stability, but not sufficient condition.
Now for accuracy, we first rewrite the simplified wave equation:

u(x, t+ h)− u(x, t)

h
= c

u(x+ s, t)− u(x, t)

s
(71)

Recall the taylor expansion:

u(x, t+ h) = u(x, t) + h
∂u

∂t
+

h2

2

∂2u

∂t2
+O(h3) (72)

u(x+ s, t) = u(x, t) + s
∂u

∂x
+

s2

2

∂2u

∂x2
+O(h3) (73)

Plug these into the wave equation, we have:

∂u

∂t
+

h

2

∂2u

∂t2
+O(h2) = c

∂u

∂x
+

cs

2

∂2u

∂x2
+O(s2) (74)

Notice that ∂u
∂t

= c∂u
∂x
, so the first different terms are O(h) and O(s), and the

truncation error terms are O(h2) and O(s2). After integration over steps, we know that
this method is first order accurate in h and s.

From the wave equation, we also know that:

∂2u

∂t2
= c

∂2u

∂t∂x
= c

∂

∂x

∂u

∂t
= c2

∂2u

∂x2
(75)

Therefore, when:

h

2

∂2u

∂t2
=

hc2

2

∂2u

∂x2
=

cs

2

∂2u

∂x2
(76)

or in other words:

s = ch (77)

the first different terms will be O(h2) and O(s2), then accuracy would be second
order.

@TSJ: sijian@umich.edu 10

Modeling and Simulations · ODE and PDE

4.3 Second Order Forward Finite Difference Approximation
(Lax-Wendroff Method)

4.3.1 Definition

After investigation of first order method, now we want to improve the accuracy to
second order. The expression is:

ui,j+1 − ui,j

h
= c

ui+1,j − ui−1,j

2s
+ c2

h

2

ui+1,j − 2ui,j + ui−1,j

s2
(78)

4.3.2 Accuracy Analysis

Recall the Taylor expansion in first order method:

ui,j+1 − ui,j
h

=
∂u

∂t
+

h

2

∂2u

∂t2
+O(h2) (79)

For the spatial derivative, we define (g is only a function of x, u is a function of x
and t, will change g back to u):

(a) : g(x+ s) = g(x) + s
dg

dx
+

s2

2

d2g

dx2
+O(s3) (80)

(b) : g(x− s) = g(x)− s
dg

dx
+

s2

2

d2g

dx2
+O(s3) (81)

Therefore, we have:

g(x+ s)− g(x− s)

2s
=

dg

dx
+O(s2) (82)

g(x+ s) + g(x− s) = 2g(x) + s2
d2g

dx2
+O(s3) (83)

g(x+ s)− 2g(x) + g(x− s)

s2
=

d2g

dx2
+O(s) (84)

Also recall the first order method:

∂2u

∂t2
= c2

∂2u

∂x2
(85)

Change g back to u, we have:

∂u

∂t
+

h

2

∂2u

∂t2
+O(h2) = c

∂u

∂x
+O(s2) + c2

h

2

∂2u

∂x2
+O(hs) (86)

∂u

∂t
= c

∂u

∂x
+O(h2 + s2 + hs) (87)

Because the first different terms are O(h2) and O(s2), so this method is second order
accuracy.

@TSJ: sijian@umich.edu 11

Modeling and Simulations · ODE and PDE

4.3.3 Stability Analysis

Recall that in ODE stability analysis, for Euler method we have:

xk+1 − x̂k+1 = (1 + hk
df

dx

∣∣∣∣
x=c

)(xk − x̂k) +O(h2
k

df(xk)

dt
) (88)

Before, we define (1 + hk
df
dx

∣∣
x=c

) as the amplification factor. In von Neumann
stability analysis, this is defined as growth factor. Because here the growth factor is
derived from the numerical scheme, so it is denoted as Ĝ. Define xk− x̂k as ∆k, because
of the existence of local error, we have the following relationship:

∆k+1 ≤ Ĝ∆k ≤ Ĝ2∆k−1 ≤ · · · ≤ Ĝk∆1 (89)

To get converging solution, we want the error at each step is decreasing or at least
staying the same. Therefore we want |Ĝ| ≤ 1 for stability.

Now recall the PDE wave function, do the Fourier transfer, we have:

u0(x) = eiλx (90)

u(x, t) = u0(x+ ct) = eiλ(x+ct) = eiλct · eiλx = eiλct · u0(x) (91)

Here, we define the exact growth factor (not from numerical scheme) G =
eiλct. The actual growth factor Ĝ will depend on the numerical method we choose.
Take upwind method as an example. Assume the CFL number as r = ch

s
, then:

u(x, t+ h) = u(x, t) + r [u(x+ s, t)− u(x, t)] (92)

u(x, t+ h) = (1− r)u(x, t) + ru(x+ s, t) (93)

Similarly, assume u(x, 0) = eiλx, so after one time step h:

u(x, h) = (1− r)eiλx + reiλ(x+s) (94)

u(x, h) = (1− r + reiλs)eiλx (95)

Therefore we could define the actual growth factor as:

Ĝ = 1− r + reiλs (96)

Expand the exponential term:

Ĝ = (1− r) + r + r(iλs) + r(iλs)2/2 + · · · (97)

Ĝ = 1 + iλrs+ r(iλs)2/2 + · · · (98)

And the exact growth factor at the first time step will be:

G = eiλch = eiλrs (99)

@TSJ: sijian@umich.edu 12

Modeling and Simulations · ODE and PDE

Also expand the exponential term:

G = 1 + iλrs+
(iλrs)2

2
+ · · · (100)

From the observation, when r = r2 = 1, or unit CFL number, we have Ĝ ≈ G. And
for upwind method, Ĝ matches with G in first order. For Lax-Wendroff method, we
have:

Ĝ = (1− r2) +
1

2
(r2 + r)eiλs +

1

2
(r2 − r)e−iλs (101)

Expand the exponential term:

Ĝ = 1 + r(iλs) + r2(iλs)2/2 +O((λs)3) (102)

Therefore, this Ĝ matches G in second order.

4.4 Diffusion Process Growth Factor

Assume a simple diffusion model:

∂u

∂t
= c2

∂2u

∂x2
(103)

Assume a general solution:

u(x, t) = G(t)eiλx (104)

Therefore:

∂u

∂t
=

dG

dt
eiλx (105)

∂u

∂x
= G(t) · (iλ) exp(iλx) (106)

∂2u

∂x2
= −λ2G(t) exp(iλx) (107)

Rearrange the equations, we have:

dG

dt
= −(cλ)2G (108)

G ∼ exp(−c2λ2t) (109)

@TSJ: sijian@umich.edu 13

Modeling and Simulations · ODE and PDE

5 Numerical Method (PDE) Summary

5.1 Overview

Before the start of summary, several definitions need to be clarified.

1. Explicit: explicit methods compute the solution at the next time step directly
from the known information at the current time step. They do not require solving
any linear or nonlinear system of equations.

2. Implicit: implicit methods compute the solution at the next time step by solving
an equation that involves both the current and the next time steps. This
generally requires solving a system of linear or nonlinear equations.

3. Conditionally Stable: stability depends on the choice of the time step ∆t and
spatial step ∆x. The method is stable only if these parameters satisfy certain
conditions or constraints.

4. Unconditionally Stable: the method is stable for any choice of the time step
∆t and spatial step ∆x.

For the following method, we use heat equation as the example if no specification:

∂u

∂t
= α

∂2u

∂x2
(110)

5.2 Forward Euler Method (Forward Time Centered Space,
FTCS)

5.2.1 Definition

Time derivative discretization:

∂u

∂t
≈

un+1
j − unj
∆t

(111)

Space derivative discretization:

∂2u

∂x2
≈

unj+1 − 2unj + unj−1

(∆x)2
(112)

Solution:

un+1
j = unj + α∆t

unj+1 − 2unj + unj−1

(∆x)2
(113)

@TSJ: sijian@umich.edu 14

Modeling and Simulations · ODE and PDE

5.2.2 Analysis

Because the solution does not contain the next time steps variable, so this method
is explicit. This method is conditionally stable, for the heat equation, the stability
criterion is:

∆t ≤ (∆x)2

2α
(114)

5.3 Backward Euler Method

5.3.1 Definition

Time derivative discretization:

∂u

∂t
≈

un+1
j − unj
∆t

(115)

Space derivative discretization:

∂2u

∂x2
≈

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
(116)

Solution:

un+1
j = unj + α∆t

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
(117)

5.3.2 Analysis

This method takes the next time step variable, so it is implicit. This method is
unconditionally stable.

5.4 Upwind Solution

5.4.1 Definition

Upwind method is commonly used for solving hyperbolic PDE. Consider the 1D
linear advection equation:

∂u

∂t
+ c

∂u

∂x
= 0 (118)

Here c is the wave speed, which could be positive or negative. The time derivative
discretization is:

∂u

∂t
≈

un+1
j − unj
∆t

(119)

When c > 0, the space discretization will use the backward difference:

@TSJ: sijian@umich.edu 15

Modeling and Simulations · ODE and PDE

∂u

∂x
≈ uj − uj−1

∆x
(120)

And the solution will be:

un+1
j = unj −

c∆t

∆x
(unj − unj−1) (121)

When c < 0, the space discretization will use forward difference:

∂u

∂x
≈ uj+1 − uj

∆x
(122)

And the solution will be:

un+1
j = unj −

c∆t

∆x
(unj+1 − unj) (123)

5.4.2 Analysis

This method is explicit and conditionally stable. The stability criterion is typi-
cally given by the CFL condition:

|c∆t

∆x
| ≤ 1 (124)

5.5 Lax-Wendroff Method

5.5.1 Definition

Lax-Wendroff method is also commonly used for solving hyperbolic PDE. Consider
the 1D linear advection equation:

∂u

∂t
+ c

∂u

∂x
= 0 (125)

First we do the Taylor expansion of u in time around tn:

un+1
j = unj +∆t

∂unj
∂t

+
∆t2

2

∂2unj
∂t2

+O(∆t3) (126)

Recall the previous chapter, we have:

∂u

∂t
= −c

∂u

∂x
(127)

∂2u

∂t2
= c2

∂2u

∂x2
(128)

So the expansion now becomes:

@TSJ: sijian@umich.edu 16

Modeling and Simulations · ODE and PDE

un+1
j = unj − c∆t

∂unj
∂x

+
c2∆t2

2

∂2unj
∂x2

+O(∆t3) (129)

Now approximate the first and second spatial derivatives using central differences:

∂unj
∂x

≈
unj+1 − unj−1

2∆x
(130)

∂2unj
∂x2

≈
unj+1 − 2unj + unj−1

(∆x)2
(131)

The final solution will be:

un+1
j = unj −

c∆t

2∆x
(unj+1 − unj−1) +

c2∆t2

2(∆x)2
(unj+1 − 2unj + unj−1) (132)

5.5.2 Analysis

This method is explicit and conditionally stable. The stability criterion is given
by the CFL condition:

|c∆t

∆x
| ≤ 1 (133)

@TSJ: sijian@umich.edu 17

	Overview
	Solutions of ODEs
	Euler's method (Forward Euler)
	Derivation
	Error Analysis

	Backward Euler Method
	Second-Order Runge-Kutta Method (Midpoint Method)
	Definition
	Second Order Proof

	Macroscopic Models of Traffic Flow (PDE)
	Overview
	Model 0: Homogeneous Flow
	Model 1: Speed Depends on Density
	Model 2: Inhomogeneous Flow

	Solutions of PDEs
	Discretization
	First Order Forward Finite Difference Approximation (Upwind)
	Definition
	Accuracy and Stability Analysis

	Second Order Forward Finite Difference Approximation (Lax-Wendroff Method)
	Definition
	Accuracy Analysis
	Stability Analysis

	Diffusion Process Growth Factor

	Numerical Method (PDE) Summary
	Overview
	Forward Euler Method (Forward Time Centered Space, FTCS)
	Definition
	Analysis

	Backward Euler Method
	Definition
	Analysis

	Upwind Solution
	Definition
	Analysis

	Lax-Wendroff Method
	Definition
	Analysis

