
Parallel and Distributed Simulation

1 Introduction

1.1 Overview

Some definitions:

1. Parallel Simulation: It involves the execution of a single simulation on a collec-
tion of tightly coupled processors (such as a shared memory multiprocessor).

Figure 1: Parallel Simulation

2. Replicated Trials: It involves the execution of several, independent but the
same simulation runs concurrently on different processors.

Figure 2: Replicated Trials

3. Distributed Simulation: It involves the execution of a single on a collection
of loosely coupled processors, such as servers interconnected by a Local Area
Network (LAN) and Wide Area Network (WAN).

1



Modeling and Simulations · Parallel and Distributed Simulation

Figure 3: Distributed Simulation

1.2 Distributed Simulation

There are several properties of distributed platforms:

1. Private Memory: Each processing node has its own private memory, so one
node could not directly modify the memory of another

2. Message-Passing: Nodes communication by exchanging messages

3. High Cost: The cost of sending messages is high compared to local computation.

1.3 Reasons for Parallel/Distributed Simulation

• Requires too much time to complete a single simulation

• Requires rapid response for real-time decision making to manage operational sys-
tems

• Requires more memory than available on a single computer

• Requires geographically distributed people or resources

1.4 System and Time

Usually systems could be divided into:

1. Physical system: the actual or imagined system being modeled

2. Simulation system: a system that emulates the behavior of a physical system

And the times could be categorized into:

1. Physical time: time in the physical system

2. Simulation (logic) time: representation of physical time in the simulation

3. Wallclock time: time during the execution of the simulation, usually output
from a hardware clock

@TSJ: sijian@umich.edu 2



Modeling and Simulations · Parallel and Distributed Simulation

2 Parallel Discrete Event Simulation

2.1 Model Setup

Recall the airport example, first we transfer the physical process to logical process:

Figure 4: Physical to Logical Process

Some remarks:

1. Each airport simulator is a logical process (LP).

2. An LP can schedule events for other LPs by sending messages.

3. No shared state between LPs.

4. The physical system here is defined as the collection of interacting physical
processes (airports).

5. The simulation system here is defined as:

• A collection of logical processes (LPs)

• Each LP models a physical process

• The interactions between physical processes modeled by scheduling events
between LPs

@TSJ: sijian@umich.edu 3

https://www.tsj.bio/HTML_Files/Academics/Computer_Science/Modeling_Simulations/ModelSim_DES.pdf


Modeling and Simulations · Parallel and Distributed Simulation

2.2 Parallel Implementation

To implement the simulation, we need to map LPs to different processors. It is
allowed to have multiple LPs per processor. All the interactions will via messages.
Some important rules:

2.3 Local Causality Constraint (LCC)

2.3.1 Definition

A model should be designed such that an event or state change at a given point
in space and time can only affect, and be affected by, events and states in its local
neighborhood within a finite amount of time. In other words, process incoming
messages in time stamp order, including externally generated events.

2.3.2 Case Study

Assume we have several logical processes shown below:

Figure 5: Airports Logical Process

Some clarifications:

1. ORD and LAX represent two local processing units (LPs) handling events.

2. E10 is an event in the queue at ORD with a timestamp of 10. E20 is an event in
the queue at LAX with a timestamp of 20.

3. When ORD process event E10, it may schedule a remote event E15 at LAX. This
means that E15 is queued at LAX but has a timestamp of 15, which is
earlier than E20.

This is a good example of LCC. According to LCC, events must be processed in the
order of their timestamps to ensure the simulation’s accuracy. Therefore, LAX could
not process E20 before E15 because E15 might change the state or conditions
that E20 depends on. Therefore, LAX must wait to process E20 until after it processes
E15. This shows the challenge of achieving concurrency (the ability of multiple
logical processes (LPs) to execute simultaneously) in distributed simulations.

@TSJ: sijian@umich.edu 4



Modeling and Simulations · Parallel and Distributed Simulation

3 Synchronization Problem

Based on the previous discussion, an algorithm is needed to ensure each LP processes
events in time stamp order. Based on the observations:

1. Ignoring simultaneous events: This means we ignore the events that have
identical timestamps. These events are often considered separately because they
can be processed in any order without affecting the overall outcome.

2. Adherence to the LCC: This is sufficient to ensure that the parallel simu-
lation will produce the same results as a sequential execution. If LCC
is followed, the results will be consistent with a scenario where all events across
all LPs are processed sequentially in timestamp order.

4 Conservative Synchronization

4.1 Overview

Conservative synchronization avoids the risk of causality errors (events are processed
out of their intended order, violating the natural cause-and-effect relationships that
should be preserved) by preventing any process from executing an event until
it is certain that no other events with earlier timestamps can affect it.

Some key principles:

1. Blocking until safe (Change!!!): Each processing unit (LP) blocks the ex-
ecution of an event until it is guaranteed that no other event with an earlier
timestamp can arrive.

2. Lookahead: This the minimum time into the future that an LP can predict
events will not interfere. LPs can use lookahead to safely process events up to a
certain point, knowing that earlier events will not occur.

• Link lookahead: If an LP is at simulation time T , and an outgoing link
has lookahead Li, then any message sent on that link must have a timestamp
of at least T + Li.

• LP lookahead: If an LP is at simulation time T , and has a lookahead L,
then that LP must have a timestamp of at least T + L.

3. Deadlock avoidance: A common challenge in conservative synchronization is
the potential for deadlock, where all LPs are waiting for each other indef-
initely. Mechanisms such as null messages (messages that convey the absence
of events within a certain time frame) are used to prevent deadlocks by providing
LPs with the information needed to make progress.

The advantages of conservative synchronization include:

1. Deterministic Execution: Events are processed in a guaranteed correct order,
eliminating the need for rollbacks and their associated complexities. The absence
of rollbacks leads to more predictable and stable performance.

@TSJ: sijian@umich.edu 5



Modeling and Simulations · Parallel and Distributed Simulation

2. Simplicity: The algorithms for conservative synchronization are generally sim-
pler compared to optimistic synchronization since they do not require mechanisms
for state saving and rollback.

3. Reduced Memory Usage: Since there are no rollbacks, there is no need to save
multiple states, resulting in lower memory usage.

But there are also some disadvantages:

1. Potential Inefficiency: Can lead to significant idle time for LPs, waiting for
the assurance that it is safe to proceed, which can reduce overall simulation per-
formance.

2. Scalability: May not scale well for very large and complex simulations due to
increased communication overhead and potential for blocking.

4.2 Chandy/Misra/Bryant (CMB) Null Message Algorithm

4.2.1 Introduction

In CMB algorithm, LPs periodically send special messages, called null messages,
to their neighboring LPs. Null messages indicate that no events with timestamps
earlier than a certain value will be sent in the future.

4.2.2 Assumptions

This algorithm needs several assumptions:

• LPs exchanging timestamped events (messages).

• Static network topology (LP-to-LP), no dynamic creation of LPs.

• Messages sent on each link are sent in timestamp order.

• Network provides reliable delivery, preserves order.

4.2.3 Procedures

The procedures include:

1. Initial State: Each LP starts with its local event queue containing events it
needs to process.

2. Sending Null Messages: When an LP processes an event, it sends a null mes-
sage to its neighboring LPs. The null message contains a timestamp indicating
the earliest time at which the LP might send a new event in the fu-
ture. This timestamp is typically the current simulation time plus some
lookahead value, representing the minimum time into the future before which
no new events will be generated.

@TSJ: sijian@umich.edu 6



Modeling and Simulations · Parallel and Distributed Simulation

3. Receiving Null Messages: When an LP receives a null message from a neigh-
boring LP, it updates its understanding of the earliest possible future event from
that neighbor. This helps the receiving LP determine the safe time hori-
zon up to which it can process its local events without waiting for
earlier events from its neighbors.

4. Processing Events: Each LP processes its local events in timestamp order up
to the minimum of the null message timestamps received from all its neighbors.

5. Deadlock Avoidance: The algorithm uses null messages to avoid deadlock
situations where all LPs are waiting indefinitely for events that might never arrive.

4.3 Time Creep Problem

Time creep occurs when LPs advance their local simulation clocks very slowly be-
cause they are overly cautious. Each LP waits for confirmation that it can safely process
an event, often resulting in significant idle times as LPs wait for messages from other
LPs. This conservatism can lead to the overall simulation progressing very slowly, as
LPs make minimal progress due to the need for constant synchronization and assurance
of event order.

5 Optimistic Synchronization (Simplified, check text-

book)

5.1 Introduction

Optimistic synchronization is a method used in parallel distributed simulation to
allow multiple processes or logical processes (LPs) to progress at their own pace without
strict adherence to global synchronization. It is based on the idea that processes can
optimistically proceed with their simulations and later correct any inconsistencies that
arise due to out-of-order events.

The advantages of optimistic synchronization include:

1. Increased Parallelism: LPs can proceed independently without waiting for
synchronization barriers, maximizing CPU utilization and reducing idle times.

2. Flexibility and Scalability: Optimistic synchronization allows the simulation
to adapt dynamically to varying workloads and event distributions without a rigid
synchronization protocol. Also, it is well-suited for large-scale simulations where
the communication overhead of conservative synchronization would be prohibitive.

3. Efficient in Low-Conflict Scenarios: If the events from different LPs rarely
conflict, rollbacks are infrequent, leading to efficient parallel execution.

There are also some disadvantages of optimistic synchronization:

@TSJ: sijian@umich.edu 7



Modeling and Simulations · Parallel and Distributed Simulation

1. Rollback Overhead: For state saving, continuous saving of states consumes
memory and adds computational overhead, especially in large-scale simulations.
For reprocessing, rollbacks require reprocessing of events, which can negate per-
formance gains if frequent.

2. Complexity: Developing an optimistic synchronization mechanism is complex,
requiring sophisticated algorithms for state management, rollback, and conflict
resolution.

3. Resource Consumption: The need to store multiple states for potential roll-
backs can lead to high memory consumption. Also, Managing rollbacks and state
saving can consume significant processor time, reducing the net benefit of paral-
lelism.

4. Unpredictable Performance: The performance gains from optimistic synchro-
nization are unpredictable and highly dependent on the frequency and cost of
rollbacks. High rollback rates can become a bottleneck, causing performance to
degrade, sometimes even below that of conservative synchronization methods.

5.2 Limiting Optimism

Limiting optimism refers to strategies used in optimistic synchronization to mitigate
the overhead and complexity associated with excessive rollbacks. These techniques aim
to balance the benefits of optimistic synchronization with mechanisms to control and
reduce the negative impacts of frequent rollbacks.

5.2.1 Lazy Cancellation

Rather than immediately canceling and rolling back upon detecting an out-of-order
event, the simulation continues for a short period to determine if the rollback is truly
necessary.

This could reduce the frequency of rollbacks by avoiding premature cancellations,
which can be beneficial in scenarios where events correct themselves shortly after being
detected as out-of-order.

5.2.2 Adaptive Optimism Control

Dynamically adjusts the level of optimism based on the current state of the simula-
tion, such as the frequency of rollbacks or the level of event conflict.

This allows the system to optimize performance by increasing optimism during low-
conflict periods and reducing it when conflicts are frequent, thereby balancing efficiency
and accuracy.

5.2.3 Bounded Time Windows

Limits the time window within which LPs can process events optimistically. If an
event falls outside this window, the LP waits until it can safely process the event.

This reduces the likelihood of long-range rollbacks, thereby limiting the extent of
reprocessing required.

@TSJ: sijian@umich.edu 8



Modeling and Simulations · Parallel and Distributed Simulation

5.3 Hybrid Approaches

Hybrid approaches in parallel distributed simulation combine elements of both con-
servative and optimistic synchronization methods to leverage the advantages of each
while mitigating their respective drawbacks. These approaches aim to provide a bal-
anced performance, ensuring efficient parallelism while maintaining accuracy and min-
imizing overhead.

@TSJ: sijian@umich.edu 9


	Introduction
	Overview
	Distributed Simulation
	Reasons for Parallel/Distributed Simulation
	System and Time

	Parallel Discrete Event Simulation
	Model Setup
	Parallel Implementation
	Local Causality Constraint (LCC)
	Definition
	Case Study


	Synchronization Problem
	Conservative Synchronization
	Overview
	Chandy/Misra/Bryant (CMB) Null Message Algorithm
	Introduction
	Assumptions
	Procedures

	Time Creep Problem

	Optimistic Synchronization (Simplified, check textbook)
	Introduction
	Limiting Optimism
	Lazy Cancellation
	Adaptive Optimism Control
	Bounded Time Windows

	Hybrid Approaches


