
Model Setup Quals Problems
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1 Spread of Deer Disease (Fall2023)

1.1 Questions

You have been asked to develop a mechanistic (not purely empirical/datadriven/machine-
learning) mathematical model to predict the spread of a new disease affecting deer. The
disease is known to be carried by ticks and can be spread to deer when they are bitten
by ticks. Although tick bites are the primary transmission route, affected deer occasion-
ally may transmit the disease to other deer through prolonged close physical contact.
The disease is serious enough that some (but not all) animals die from it.

a) Write the equations for a mathematical model that can predict the time course
of the infection, assuming that data would be available to determine values of pa-
rameters used in the model. Explain the meanings of all variables and parameters
in your model.

b) For the model you developed in part (a), explain three assumptions encoded in
your model (assumptions you made while creating the model that informed the
form of the model). You may not use any assumptions already listed in the
problem statement.

c) For two of the assumptions you listed in part (b), describe in words and using
mathematics how your model may need to be changed if the assumption is in-
correct. You should choose assumptions that could require changes in the model.
Explain the meaning of the changes and why you made them.

d) Given that the disease is new, it is likely that the values of some parameters in
your model are not known with a high degree of certainty. Identify a parameter
whose value probably would be uncertain and explain in general how you might
account for this uncertainty when making predictions using your model. (In other
words: if all parameter values were known with great certainty, you would just
solve the model once using those values. What might you do differently if one
parameter’s value was highly uncertain?)

1.2 Solutions

1.2.1 Question a

Design a classical SIR (Susceptible, Infected, Recovered) model. The variables in-
clude:

1



Model Setup Quals Problems

• S(t): Number of susceptible deer at time t

• I(t): Number of infected deer at time t

• R(t): Number of recovered deer at time t

• D(t): Number of dead deer at time t

And the parameters include:

• β: Transmission rate due to tick bites

• α: Transmission rate due to close physical contact between deer

• γ: Recovery rate

• δ: Disease-induced death rate

Therefore, the model equations will be:

dS

dt
= −βSI − αSI (1)

dI

dt
= βSI + αSI − γI − δI (2)

dR

dt
= γI (3)

dD

dt
= δI (4)

1.2.2 Question b

The assumptions of SIR model include:

1. Homogeneous Mixing: Assume that every deer has an equal chance of coming
into contact with every other deer.

2. Constant Population: The total population size N = S+I+R−D is constant.

3. Instantaneous Recovery and Death Rates: constant recovery and death
rates over time.

1.2.3 Question c

If the homogeneous mixing assumption is incorrect, then we need to introduce a
spatial component or consider different subpopulations. The model may need to in-
clude partial different equations to model local interactions.

If the population size is not constant, for example due to births and immigration,
we need to introduce these parameters into the equations.
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1.2.4 Question d

The transmission rate (α) due to close physical contact may have high degree of
certainty. Several approaches could account for uncertainty:

1. Sensitivity Analysis: perform sensitivity analysis to determine how changes in
α affect the model.

2. Stochastic Modeling: use stochastic methods to model the uncertainty.

2 Georgia Tech Courses (Spring 2023)

(a) You have been asked to develop a mechanistic (not purely empirical/data-driven/machine-
learning) mathematical model to predict enrollment in an established Georgia
Tech course. Specifically, you should develop a model that predicts for semester
N the enrollment EN , using enrollment in one or more prior semesters, such as
EN−1, along with any other factors you choose.

The simplest model would be to use the previous semester’s enrollment: EN+1 =
EN given some specified E0. However, such a model neglects many factors that
might influence enrollment in later semesters. Write an updated model that takes
into account three factors that should improve the model’s accuracy. For each of
the factors you choose, (i) explain in words and in mathematics the factor/effect
you are including and (ii) explain what kinds of data would be needed to inform
the model (for example, to provide values for any new parameters).

You should assume that the course is offered online with no maximum enrollment
enforced, and that it has been offered continuously for around 5–10 years (so there
is some historical information, but not enough to predict reliably using only curve-
fitting; hence the desire for a mechanistic model). You also may assume that the
enrollment prediction is being generated a few months before the semester (so,
not years in advance, but before registration begins).

(b) For the model you developed in part (a), explain two assumptions your model
makes. For each assumption, describe a way in which that assumption could be
eliminated or relaxed. (You may not use any assumptions already listed here in
the problem statement.)

(c) Next, you have been asked to consult on the development of a similar model, but
this time for the on-campus setting, with the goal of suggesting the appropriate
classroom capacity for a future semester. In this case, the course has an enrollment
cap given by the capacity of the classroom in which it is scheduled. For a model
that can recommend when a different classroom (with larger or smaller capacity)
should be used, what main factors would you add to the model and how would
they inform your model? You are not required to write out a full model in this
case, but you should explain the sorts of terms and information that you would
seek to add and what data would be needed/could be used to tailor your model
to a particular course.
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2.1 Question a

The proposed math model will be:

EN+1 = EN +∆EN − f(D) + g(M) (5)

Here:

1. ∆EN : The change in enrollment based on observed trends. The trend in en-
rollment over several semesters could be upward or downward, depending on the
course’s popularity, industry demand, etc. Data: Historical enrollment data over
several semesters to calculate the trend.

2. f(D) : Function of the course’s difficulty. If the course is perceived as difficult,
fewer students might enroll in subsequent semesters. Data: Surveys or feedback
scores on course difficulty, pass/fail rates, and student dropout rates.

3. g(M) : A function representing the effect of marketing campaigns. Effective mar-
keting campaigns or new awareness initiatives could increase enrollment. Data:
Data on marketing expenditures, outreach activities, and their historical impact
on enrollment.

2.2 Question b

The two assumptions include:

1. Linear Trend in Enrollment: The model assumes a linear trend in enrollment
changes. Relaxation: The trend could be modeled with a more complex function
(e.g., quadratic, exponential) if non-linear trends are observed.

2. Independent Factors: The model assumes that factors like difficulty and mar-
keting affect enrollment independently. Relaxation: Interactions between factors
could be considered. For example, marketing might have a reduced effect if the
course is perceived as very difficult.

2.3 Question c

Several new factors needed to consider:

1. Classroom Capacity: If the classroom capacity is smaller or larger than re-
quired, it might affect enrollment. Data: Historical data on classroom sizes, and
their correlation with actual enrollment.

2. Time Slot Availability: Certain time slots (e.g., evening classes) might be
more or less popular, affecting enrollment. Data: Enrollment data segmented by
different time slots to identify patterns.

3. Course Popularity Relative to Other Courses: If similar courses are offered
at the same time, it could split potential enrollment. Data: Enrollment data for
competing courses, and scheduling information.
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3 Georgia Tech Traffic Simulator (Fall 2022)

Georgia Tech would like your help designing a traffic simulator to help improve the
flow of pedestrian, bike/scooter, bus, and car traffic on campus. In particular, they want
to be able to study a variety of “what-if” scenarios that may involve adding or removing
bus routes or adjusting bus frequencies; adding or removing bike lanes; changing some
streets from two-way to one-way; adding stop signs; adjusting signal timing (the length
of time between changes at stop lights); creating “pedestrian scrambles” (diagonal
crossings, like the one at 5th and Spring Streets). Explain how you would approach
this simulation project. Start by considering what metric(s) of efficiency might make
sense. Then, describe what real-world features you would include and ignore; what
kind of conceptual model you would use; what kind of data you might need; and how
you would approach validating the simulator.

3.1 Metrics of Efficiency:

The possible metrics include:

1. Average Travel Time: The average time it takes for pedestrians, bikes, buses,
and cars to travel between two points on campus.

2. Intersection Throughput: The number of vehicles, pedestrians, or cyclists that
pass through an intersection in a given time period.

3. Waiting Time at Intersections: The waiting time of vehicles, pedestrians, or
cyclists that pass through an intersection.

4. Safety: The number of conflicts or near-misses between pedestrians, cyclists, and
vehicles.

5. Environmental Impact: Measuring the reduction in vehicle emissions due to
improved traffic flow.

3.2 Features

Real world features to include:

1. Traffic Types: Different types of traffic (pedestrians, bikes, buses, cars) with
realistic behavior patterns.

2. Road and Path Networks: Accurate representations of roads, bike lanes,
pedestrian paths, and intersections.

3. Traffic Control Devices: Traffic lights, stop signs, pedestrian scrambles, and
other control mechanisms.

4. Traffic Flows: Time-dependent flows of traffic, simulating peak and off-peak
hours.

Features to ignore:
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1. Micro-Level Human Behavior: Details such as individual decision-making or
random pedestrian behavior might be simplified.

2. Weather Conditions: Unless significant, you may ignore weather effects like
rain or fog, which can complicate the simulation.

3. Minor Road Obstacles: Ignore or simplify smaller obstacles like potholes,
which are difficult to model and may not significantly affect overall traffic flow.

3.3 Model and Data

For this problem, Network Flow Model is a good fit. It uses a network of nodes
(intersections) and edges (roads, paths) where agents move according to traffic rules
and signals.

For the data requirements:

1. Traffic Counts: Historical data on the number of pedestrians, cyclists, vehicles,
and buses using campus roads and paths.

2. Signal Timing Data: Current timing for traffic signals and pedestrian crossings.

3. Road Network Data: Detailed maps of campus roads, paths, bike lanes, and
intersections.

3.4 Validation

Several validation approaches include:

1. Calibration: Adjust the simulation parameters based on historical data to match
observed traffic patterns.

2. Validation: Compare the simulation’s predictions with real-world observations,
such as travel times and traffic flow during peak hours.

3. Sensitivity Analysis: Test how sensitive the model is to changes in key param-
eters, ensuring it remains accurate under different conditions.

4. Scenario Testing: Run known scenarios (e.g., previous road closures or changes)
to see if the simulator predicts outcomes that align with past observations.

4 Larva, Pupa (Fall 2022)

A new insect species has been identified on a remote island. The species is not
native to the island and has been preying heavily on native plants, so there is a desire
to take steps to eliminate the new species if possible. The insect goes through four life
stages: in order, they are egg, larva, pupa, and adult. Only the adults prey on the
plants.
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Two insect extermination approaches are being considered. One involves setting
traps that kill adult insects. The other is application of a toxic spray that is designed
to target the larval stage.

Your task is to consider how to develop a mathematical model that could be used
to help decide which approach to use.

(a) Explain what criterion or criteria should be considered in determining which ex-
termination approach would be better. In other words, what should it mean to
be the “better” approach and why?

(b) What variables and parameters should be included in an ideal model and why?
(If it helps, you may assume that it would be possible to measure any quantity
you would like.)

(c) Write a preliminary mathematical model that could begin to answer the question
of which approach to use. The goal is not to include every element you think
should be in an ideal model, but to develop a reasonable start that is appropri-
ate for the context (this time-constrained exam). Most likely your preliminary
model will involve a small subset of the variables and parameters you identified
in part (b). Your preliminary model must include some way to determine which
extermination approach is “better,” although it may not address all criteria that
you think a fully developed model should involve. Explain the meanings of all
components of your model, including how the model output would be used to
determine which extermination approach was a better choice, and explain why
you developed your model as you did.

(d) List at least three important assumptions that your model makes. Discuss how
reasonable these assumptions are. (Because it was already mentioned, you may
not list an assumption about the feasibility of measuring any quantities!)

4.1 Question a

Some important criteria include:

1. Effectiveness in Reducing Insect Population: The primary criterion should
be how effectively each approach reduces the overall insect population over time.

2. Impact on the Ecosystem: Consideration should be given to the impact on
the island’s ecosystem, including any non-target species.

3. Cost: The financial cost of implementing the extermination method should be
considered.

4. Feasibility: The practicality of deploying the approach, including how easy it is
to apply traps or toxic spray over the island, and the labor or technology required,
should be considered.
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4.2 Question b

The following variables and parameters should be included:

1. Population Dynamics:

• Eggs (E): The number of eggs laid.

• Larvae (L): The number of larvae that hatch from eggs.

• Pupae (P ): The number of larvae that successfully pupate.

• Adults (A): The number of pupae that mature into adults.

2. Mortality Rates:

• Natural Mortality (Mn): The natural death rate for each stage (eggs,
larvae, pupae, adults).

• Mortality due to Traps (Mt): The death rate of adults due to traps.

• Mortality due to Toxic Spray (Ms): The death rate of larvae due to
toxic spray.

3. Reproduction Rate (R): The rate at which adults produce eggs.

4. Carrying Capacity (K): The maximum population size that the environment
can sustain.

4.3 Question c

A preliminary model could focus on comparing the population of adults after a
certain period for both approaches.

Model Dynamics:

Without intervention:

En+1 = An ×R + En

Ln+1 = En × (1−MnE)

Pn+1 = Ln × (1−MnL)

An+1 = Pn × (1−MnP )

With Traps:

An+1 = Pn × (1−MnP )× (1−Mt)

Traps reduce the adult population directly by increasing the adult mortality rate.
With Toxic Spray:

Ln+1 = En × (1−MnE)× (1−Ms)

Toxic spray reduces the larval population, indirectly reducing the adult population.
The model could then compare the population of adults An+1 after several genera-

tions under each approach. The approach leading to a lower An+1 would be considered
more effective.
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4.4 Question d

• Constant Reproduction Rate: The reproduction rate R is constant.

– Reasonableness: This is a simplification; in reality, reproduction might
vary based on environmental conditions or population density.

• No Immigration or Emigration: The insect population is closed, with no
individuals entering or leaving the island.

– Reasonableness: This might be reasonable for an isolated island but could
be less accurate if the insect can migrate.

• Uniform Application of Extermination Methods: Traps and toxic spray
are applied uniformly across the entire island.

– Reasonableness: This assumes ideal conditions for extermination, but in
practice, coverage might be uneven, affecting the results.

These assumptions simplify the model but also highlight potential limitations that
could be addressed in a more detailed analysis.

5 Disease Transmission (Spring 2022)

The following model is being proposed to study the transmission of a disease.

dS

dt
= b− ((1− f)λN + fλR)S − µS, (3)

dIN
dt

= (1− f)λNS − (d+ µ)IN , (4)

dIR
dt

= fλRS − (d+ µ)IR, (5)

dP

dt
= rP

(
1− P

K

)
+ ξNIN + ξRIR − µPP. (6)

The state variables have the following meanings.

S Size of human population not infected with pathogen (susceptible)
IN Size of human population infected with non-resistant pathogen
IR Size of human population infected with resistant pathogen
P Size of pathogen population

The parameters have the following meanings.
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b Birth rate of human population
f Fraction of infecting pathogens that are resistant
λN Infection rate of human population with non-resistant pathogens
λR Infection rate of human population with resistant pathogens
µ Natural human death rate
d Human death rate from infection
ξN Pathogen shedding rate by individuals infected with non-resistant pathogens
ξR Pathogen shedding rate by individuals infected with resistant pathogens
Γ Birth rate of pathogen
K Carrying capacity of pathogen
µP Death rate of pathogen

(a) Describe in words what each equation means by discussing what each term in
each equation indicates.

(b) List at least 10 assumptions or choices that the model authors make. For each,
discuss whether each assumption/choice made seems reasonable or is potentially
problematic.

(c) For four problematic assumptions/choices you identified in part (b), suggest a
modification to the model that could counteract the problem and discuss how
practical such a solution would be given the ease of obtaining relevant data for
validation and/or determination of parameter values. (You may not address a
problem by outright removing the problematic component!) The modification
may be a verbal description; it does not have to be a mathematical expression.

5.1 Interpretation of the Equations

The system of differential equations provided models the transmission of a disease
within a human population, considering both resistant and non-resistant pathogens, as
well as the dynamics of the pathogen population itself.

1. Equation (3): Susceptible Population (S)

dS

dt
= b− ((1− f)λN + fλR)S − µS

• b: This term represents the birth rate of the human population, contributing to
an increase in the susceptible population S.

• ((1− f)λN + fλR)S: This term represents the rate at which susceptible individ-
uals become infected. The rate depends on the infection rates λN and λR of non-
resistant and resistant pathogens, respectively, and the fraction f of pathogens
that are resistant.

• µS: This term accounts for the natural death rate of susceptible individuals,
reducing the susceptible population.
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2. Equation (4): Infected Population with Non-resistant Pathogens (IN)

dIN
dt

= (1− f)λNS − (d+ µ)IN

• (1 − f)λNS: This term represents the rate at which susceptible individuals are
infected by non-resistant pathogens.

• (d + µ)IN : This term represents the decrease in the population infected with
non-resistant pathogens due to deaths caused by the infection (d) and the natural
death rate (µ).

3. Equation (5): Infected Population with Resistant Pathogens (IR)

dIR
dt

= fλRS − (d+ µ)IR

• fλRS: This term represents the rate at which susceptible individuals are infected
by resistant pathogens.

• (d + µ)IR: This term represents the decrease in the population infected with
resistant pathogens due to deaths caused by the infection (d) and the natural
death rate (µ).

4. Equation (6): Pathogen Population (P )

dP

dt
= rP

(
1− P

K

)
+ ξNIN + ξRIR − µPP

• rP
(
1− P

K

)
: This term represents logistic growth of the pathogen population,

where r is the intrinsic growth rate and K is the carrying capacity of the envi-
ronment for the pathogen.

• ξNIN + ξRIR: These terms represent the contribution to the pathogen population
from individuals infected with non-resistant and resistant pathogens, respectively.

• µPP : This term accounts for the death rate of the pathogen population.

5.2 Assumptions or Choices in the Model

1. Constant Birth Rate (b): This assumes a constant birth rate, which may not be
realistic if the disease significantly affects the reproductive rate of the population.

2. Constant Fraction of Resistant Pathogens (f): The model assumes f is
constant, but in reality, the fraction of resistant pathogens could change over
time due to mutation or selective pressures.

3. Constant Infection Rates (λN and λR): The infection rates are assumed con-
stant, but they could vary with changes in the environment, population density,
or public health interventions.

4. No Recovery Term: The model does not include terms for recovery from in-
fection, which could lead to an overestimation of the infected populations.
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5. Logistic Growth of Pathogen (rP (1 − P
K
)): The logistic growth assumption

is common, but it may not apply if the pathogen population is affected by other
factors like competition with other microorganisms or environmental changes.

6. No Migration or Movement of Population: The model assumes a closed
population with no migration, which may not be realistic, especially in the case
of contagious diseases.

7. Constant Shedding Rates (ξN and ξR): The shedding rates are assumed
constant, but they could vary with disease progression, treatment, or host factors.

8. Additive Contribution to Pathogen Population: The model assumes that
the contributions of infected individuals to the pathogen population are additive
and independent, which might not always be true.

9. No Delays in Disease Dynamics: The model does not include any delays
in the progression of the disease or in the response of the pathogen population,
which could affect the accuracy of the predictions.

10. No Age Structure or Differentiation: The model treats the human popula-
tion as homogeneous, without considering differences in susceptibility, mortality,
or behavior based on age, which could be significant.

5.3 Modifications to Problematic Assumptions

1. Incorporate Recovery Term:

• Modification: Introduce a recovery rate term γIN and γIR in the equations
for IN and IR to account for individuals recovering from infection.

• Practicality: Data on recovery rates is often available from clinical studies,
making this modification practical.

2. Dynamic Fraction of Resistant Pathogens (f):

• Modification: Allow f to vary over time as a function of the pathogen
population, potentially incorporating a mutation rate or selection pressure
term.

• Practicality: While more complex, this could be modeled using experimen-
tal data on pathogen evolution under different conditions.

3. Incorporate Migration/Movement:

• Modification: Introduce terms that account for the migration of individ-
uals into and out of the population, affecting the susceptible, infected, and
recovered populations.

• Practicality: Migration data is often available from census and public
health sources, but incorporating it would increase the complexity of the
model.

4. Variable Infection Rates:
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• Modification: Allow λN and λR to vary as functions of time or popula-
tion density, possibly using a saturation function to model the impact of
interventions like vaccination or quarantine.

• Practicality: This would require real-time or historical data on infection
rates and their correlation with public health measures, but it could signifi-
cantly improve model accuracy.

6 Traffic Circles (Fall 2021)

Many transportation networks use traffic circles to help manage traffic flow. Traffic
circles may range from large ones with many lanes in the circle and multiple lanes of
incoming traffic at each point of entry to small ones with only one or two lanes in the
circle overall. Managing traffic within the circle can be done in several ways; some
examples are listed below. Note that at a stop sign each car is required to come to a
complete stop before proceeding, whereas with a yield sign a car must stop if there is
oncoming traffic but may proceed if it is safe to do so. Traffic lights allow traffic to
proceed freely while the light is green but all traffic must stop when the light is red
until it turns green (to allow traffic to flow from a different direction).

• Method 1: Placing a stop or yield sign on every incoming road to give priority
to traffic already in the circle.

• Method 2: Placing a yield sign in the circle at each incoming road to give priority
to traffic entering the circle.

• Method 3: Placing a traffic light on every incoming road, with a right turn on
red prohibited.

Other designs also may be possible, including combinations of these options. Imag-
ine that you have been hired as a consultant for a transportation management company.
They have tasked you with developing a model to determine how best to control the
flow of traffic in, around, and out of a circle. The model should be general enough to
be useful for any circle by changing relevant parameters.

For this problem, you do not need to develop a full-scale model, but you should
discuss how you would go about developing a model. What variables and parameters
would be needed? What type of mathematical-logical structure might you use for
modeling this situation? What assumptions would you make and how would you justify
them? What factors do you think would cause the most uncertainty and why, and what
are some ways such uncertainty could be mitigated?

6.1 Variables and Parameters

For modeling traffic flow in and around a traffic circle, the following variables and
parameters would be relevant:

• Traffic Flow Rate (Q): The number of vehicles per unit time entering and
leaving the circle.
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• Vehicle Arrival Rate (λ): The rate at which vehicles arrive at each entrance
to the circle.

• Vehicle Departure Rate (µ): The rate at which vehicles can depart from the
circle.

• Capacity (C): The maximum number of vehicles that the circle can accommo-
date without causing excessive delays.

• Signal Timing (Ts): The duration of green and red lights if traffic signals are
used.

• Stop/Yield Compliance Rate (p): The proportion of drivers who fully comply
with stop or yield signs.

• Circle Geometry (G): The number of lanes, circle diameter, and number of
entrances/exits.

• Pedestrian and Bicycle Traffic (P ): The interaction of pedestrian and bicycle
traffic with vehicular traffic, which may affect flow rates.

6.2 Mathematical-Logical Structure

Given the nature of the traffic circle, a queueing theory approach could be used
to model traffic flow. This approach is suitable because:

• Traffic flow can be modeled as vehicles entering and leaving a system (the circle),
with potential queuing at each entrance.

• Different methods of traffic control (stop signs, yield signs, traffic lights) can be
modeled by adjusting the arrival and departure rates (λ and µ) and the circle’s
capacity (C).

The model might look like this:
Queueing System Model (M/M/1 or M/D/1):

• M/M/1 : Vehicles arrive according to a Poisson process, and service times (the
time spent in the circle) are exponentially distributed.

• M/D/1 : Vehicles arrive according to a Poisson process, and service times are
deterministic.

Equilibrium Condition:
λ < µ× C

where λ is the total arrival rate, and µ× C is the total departure capacity.
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6.3 Assumptions

Several assumptions would need to be made:

• Homogeneous Traffic Flow: Assume that all vehicles are similar in size and
behavior, simplifying the model.

– Justification: This simplifies the model and is reasonable in a controlled
environment.

• Constant Arrival and Departure Rates: Assume that λ and µ are constant
over time.

– Justification: This assumption is made to simplify the model but may need
to be adjusted for peak and off-peak times.

• Full Compliance with Traffic Control: Assume that all drivers fully comply
with the traffic control mechanisms in place (stop, yield, or traffic lights).

– Justification: Full compliance simplifies modeling; however, in reality, com-
pliance may vary.

6.4 Uncertainty and Mitigation

Uncertainty could arise from several factors:

• Driver Behavior: Variations in driver compliance with traffic controls (e.g.,
some drivers may not fully stop at stop signs).

– Mitigation: Sensitivity analysis could be performed by varying the compli-
ance rate p to see how it affects the model’s predictions.

• Variability in Arrival Rates: Traffic flow is often not uniform, and arrival
rates can fluctuate due to external factors like weather or special events.

– Mitigation: The model could incorporate a stochastic process to account
for variability in arrival rates, or a time-dependent model could be used.

• Interaction with Non-Vehicular Traffic: Pedestrian and bicycle traffic can
significantly impact traffic flow.

– Mitigation: Extend the model to include these interactions or use real-
world data to adjust parameters accordingly.

6.5 Conclusion

By defining the key variables and parameters, selecting an appropriate mathemat-
ical model, making reasonable assumptions, and addressing potential uncertainties, a
general model for controlling traffic flow in and around traffic circles can be developed.
This model could then be fine-tuned or expanded depending on the specific conditions
of a given traffic circle.
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7 Tree Harvesting (Spring 2021)

A large tree farm has come to you asking for advice on how to set a policy that can
be used to guide their tree harvesting for the foreseeable future. They have brought
you three potential modeling approaches they are considering using, all based on a
discrete-time logistic model of population growth:

Tn+1 = Tn + rTn

(
1− Tn

K

)
, (6)

where Tn represents the number of trees in the population after n years, r is the
growth rate of the tree population (without a sign restriction), andK > 0 is the carrying
capacity. You should assume that new trees will occur only through population growth
(that is, only the harvesting mechanism removes trees), that the trees are generally
healthy and not under any external environmental stresses (drought, insect infestation,
etc.), and that there is an initial population of trees T0 > 0.

The differences in the modeling approaches are based on how to incorporate a har-
vesting term, which will reduce the population.

Option 1.

Tn+1 = Tn + rTn

(
1− Tn

K

)
− hTn, (7)

where h ≥ 0 is a constant. Here, logistic growth is based on the previous year’s
tree population and trees are separately removed at a rate proportional to the previous
year’s tree population.

Option 2.

Tn+1 = Tn + r (Tn − hTn)

(
1− Tn − hTn

K

)
, (8)

where h ≥ 0 is a constant. In this case, the harvesting is incorporated into the tree
population terms in the logistic growth component.

Option 3.

Tn+1 = Tn + r (Tn − hTn)

(
1− Tn

K

)
− hTn, (9)

where h ≥ 0 is a constant. This option is similar to Option 1 except that the logistic
growth rate incorporates the harvesting term.

Your task. Your job is to provide feedback about the models.

1. What biologically meaningful long-term behaviors are available for each model?
(In other words, assuming that the three constants r, K, and h do not change,
what can realistically happen to the population after “many” years?)

2. Under which conditions will these long-term behaviors occur? Explain briefly (a
sentence or two) why these conditions are or are not reasonable.

3. Comment on which model(s) you think is (are) most appropriate. (It is not
acceptable to say all are equally good; you need to express some opinion and
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provide a justification for your opinion.) You may wish to consider, for example,
how you might expect the long-term behavior of the population to depend (or
not depend) on each parameter and why.

7.1 Long-term behaviors for each model

Let’s analyze each option with respect to the long-term behavior of the population
Tn.

Option 1

The model is given by:

Tn+1 = Tn + rTn

(
1− Tn

K

)
− hTn

This simplifies to:

Tn+1 = Tn

(
1 + r

(
1− Tn

K

)
− h

)
In the long term, the population Tn will stabilize (or reach an equilibrium) when Tn+1 =
Tn. Setting Tn+1 = Tn, we get:

1 + r

(
1− Tn

K

)
− h = 1

r

(
1− Tn

K

)
= h

1− Tn

K
=

h

r

Tn = K

(
1− h

r

)
For Tn to be positive, h must be less than r. If h ≥ r, the population will eventually

decline to zero.

• If h < r: The population stabilizes at Tn = K
(
1− h

r

)
.

• If h = r: The population stabilizes at Tn = 0.

• If h > r: The population will decrease to zero (extinction).

Option 2

The model is given by:

Tn+1 = Tn + r (Tn − hTn)

(
1− Tn − hTn

K

)
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This simplifies to:

Tn+1 = Tn + rTn(1− h)

(
1− Tn(1− h)

K

)
At equilibrium:

1 + r(1− h)

(
1− Tn(1− h)

K

)
= 1

r(1− h)

(
1− Tn(1− h)

K

)
= 0

If r(1− h) = 0, this implies that h = 1 or r = 0, leading to Tn = 0 as the equilibrium.
For h ̸= 1 and r ̸= 0:

1− Tn(1− h)

K
= 0

Tn(1− h) = K

Tn =
K

1− h

• If h < 1: The population stabilizes at Tn = K
1−h

.

• If h = 1: The population stabilizes at Tn = 0 (extinction).

• If h > 1: The formula breaks down, and Tn would be negative, which is not
biologically meaningful, leading again to extinction.

Option 3

The model is given by:

Tn+1 = Tn + r (Tn − hTn)

(
1− Tn

K

)
− hTn

This simplifies to:

Tn+1 = Tn

(
1 + r(1− h)

(
1− Tn

K

)
− h

)
At equilibrium:

1 + r(1− h)

(
1− Tn

K

)
− h = 1

r(1− h)

(
1− Tn

K

)
= h

1− Tn

K
=

h

r(1− h)

Tn = K

(
1− h

r(1− h)

)
• If h < r(1− h): The population stabilizes at Tn = K

(
1− h

r(1−h)

)
.

• If h = r(1− h): The population stabilizes at Tn = 0.

• If h > r(1− h): The population will decrease to zero (extinction).
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7.2 Conditions for long-term behaviors

• For Option 1: The population will stabilize at Tn = K
(
1− h

r

)
as long as h < r.

If h ≥ r, the population will decline to zero.

• For Option 2: The population will stabilize at Tn = K
1−h

as long as h < 1. If
h ≥ 1, the population will decline to zero.

• For Option 3: The population will stabilize at Tn = K
(
1− h

r(1−h)

)
as long as

h < r(1− h). If h ≥ r(1− h), the population will decline to zero.

7.3 Which model is most appropriate?

• Option 1 is the most straightforward and easiest to interpret biologically, as it
clearly separates growth and harvesting. However, it may not accurately capture
the interactions between growth and harvesting.

• Option 2 incorporates harvesting into the growth function itself, which may be
more realistic as it accounts for the reduction in population before calculating
growth. This model might better reflect scenarios where harvesting has a direct
impact on the growth rate.

• Option 3 is a hybrid of the first two models and might be appropriate in scenarios
where both separate and integrated effects of harvesting on population growth are
important. However, it might be more complex to interpret and analyze.

Conclusion: The best model depends on the specific context and how closely the
assumptions align with the real-world situation. If the harvesting and growth processes
are indeed independent, Option 1 might be more appropriate. If harvesting directly
affects the growth rate, Option 2 or Option 3 might be more realistic, with Option 2
potentially being preferable due to its simpler form.

You should consider the real-world dynamics of tree growth and harvesting to make
an informed decision.

8 Coastal City Evacuation (Spring 2021)

You need to develop a strategy to evacuate a large coastal city (with a population
in the millions or more) in an emergency situation, such as an incoming hurricane. The
metric you are concerned with is the amount of time needed to completely evacuate the
city. You are to develop a simulation model to evaluate alternate evacuation approaches.
Describe the simulation model you would develop to attack this problem. What type
of modeling approach would you use (queueing model, cellular automata, differential
equations, etc.)? Justify your answer relative to alternate approaches. What are the
key state variables and parameters used by the model? What data would you need to
collect in order to create a credible model? How would you validate your model, given
that performing an actual evacuation is not practical?
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8.1 Choosing the Modeling Approach

For this problem, a cellular automata (CA) model is a suitable choice. This
approach is advantageous due to the following reasons:

• Scalability: CA models can represent large-scale systems by dividing the city
into a grid where each cell represents a small unit of space (e.g., a city block).

• Dynamic Interactions: CA allows for modeling complex interactions between
different agents (e.g., vehicles, pedestrians) and environmental factors (e.g., road
blockages).

• Flexibility: It can incorporate various traffic rules, road types, and evacuation
routes, making it adaptable to different scenarios.

• Efficiency: CA models are computationally efficient, making them suitable for
simulating large populations over time.

Alternative approaches like queueing models are less suitable because they typi-
cally assume steady-state conditions and may not accurately capture the dynamic and
chaotic nature of an evacuation. Differential equations could model aggregate be-
havior but might oversimplify individual-level interactions, which are critical during
evacuations.

8.2 Key State Variables and Parameters

State Variables:

• Position of Individuals/Vehicles: The location of each person or vehicle on
the grid.

• Velocity/Speed: The speed at which individuals or vehicles are moving.

• Evacuation Status: Whether an individual or vehicle has reached a safe loca-
tion.

• Traffic Density: Number of individuals/vehicles per grid cell.

• Road Capacity: Maximum number of vehicles that can pass through a road
section in a given time.

Parameters:

• Population Density: The initial number of people per unit area.

• Exit Points: Locations where people can safely evacuate the city.

• Traffic Flow Rules: Governing how vehicles move through intersections, turns,
etc.

• Environmental Factors: Road closures due to flooding, blocked routes, etc.

• Evacuation Start Time: Time at which evacuation begins relative to the hur-
ricane’s expected landfall.
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8.3 Data Collection

To create a credible model, the following data would be required:

• City Layout: Detailed maps of road networks, including all streets, highways,
and exits.

• Population Distribution: Information on where people live, work, and likely
locations at the time of the evacuation order.

• Traffic Patterns: Historical data on traffic flow rates, congestion points, and
typical travel times.

• Evacuation Routes: Designated evacuation paths and their capacities.

• Behavioral Data: Studies on how people behave during evacuations, including
compliance with orders and typical delays.

8.4 Model Validation

Given that performing an actual evacuation is impractical, the model can be vali-
dated through:

• Historical Data: Comparing model outputs with data from previous evacuations
or large-scale emergency drills.

• Sensitivity Analysis: Testing the model under various scenarios to ensure ro-
bustness (e.g., different start times, varying road capacities).

• Expert Review: Consulting with emergency management professionals to vali-
date the assumptions and logic used in the model.

• Simulations: Running simulations with small, controlled environments (e.g.,
small sections of the city) to see if the model predictions align with observed
behaviors in similar situations.

8.5 Conclusion

By using a cellular automata model, the evacuation of a large coastal city can be
simulated effectively, taking into account dynamic interactions between individuals,
vehicles, and environmental factors. The model’s credibility will depend on accurate
data input and thorough validation through historical comparisons and expert review.

9 Climate Simulator (Fall 2020)

Climate simulations predict that as the earth warms, different regions of the planet
will begin to experience a variety of phenomena that make them uninhabitable. For
example, increasing temperatures near the equator may make it harder to farm, or
rising sea levels may make coastal regions unlivable. One prediction is that humans
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will begin to move away from such regions into others, which may cause additional
problems. For example, people may tend to migrate away from rural farming regions,
where agriculture has become difficult, to cities, where migrants will create additional
pressure on social programs, transportation, and housing.

To help policymakers understand the impact of human migration due to climate
change on cities, you have been asked to lead a team to develop new models and
simulations. In particular, your team already has at its disposal two existing simulators:
(1) a climate simulator, based on a physics-based continuous-time and continuous-space
model, that can predict the average temperature in any region of the world at any
moment in time; and (2) a population migration simulator, based on a discrete-time,
discrete-space model, that can estimate population levels at the county/province level
and migration flows between pairs of counties/provinces. What do you see as the top
3-4 major challenges for your team? Explain what each challenge is, why it is hard, and
suggest what strategies you might use to deal with them. You should consider both
technical and “non-technical” challenges.

9.1 Integration of Climate and Migration Models

Challenge: Integrating the climate simulator with the migration simulator poses
a significant technical challenge. The climate simulator operates on a continuous-time
and continuous-space basis, while the migration simulator is discrete-time and discrete-
space. The challenge lies in reconciling these two different types of data structures and
simulation approaches to create a cohesive model that can accurately predict migration
patterns based on changing climate conditions.

Why it’s Hard:

• Temporal and Spatial Resolution: The difference in time steps and spatial
resolution between the two models needs to be reconciled, which may involve
rescaling or interpolating data.

• Data Compatibility: The output from the climate model may not directly map
onto the input required by the migration model, requiring complex transforma-
tions and data processing.

• Computational Complexity: Integrating two large-scale models increases com-
putational complexity, requiring significant processing power and optimization
techniques.

Strategies to Deal with It:

• Data Interpolation and Rescaling: Develop algorithms to interpolate and
rescale data from the climate model to match the input requirements of the mi-
gration model.

• Modular Design: Design the models in a modular fashion to allow for iterative
testing and refinement of the integration process.

• Parallel Processing: Utilize parallel processing techniques to handle the in-
creased computational load.
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9.2 Uncertainty in Climate Projections and Migration Pat-
terns

Challenge: Both climate projections and migration patterns are inherently uncer-
tain. The climate model’s predictions may vary significantly depending on the input
parameters and scenarios (e.g., different greenhouse gas emission scenarios). Similarly,
human migration is influenced by various unpredictable factors such as government
policies, economic conditions, and social networks.

Why it’s Hard:

• Scenario Planning: The need to consider multiple scenarios and their proba-
bilistic outcomes increases the complexity of the analysis.

• Sensitivity Analysis: Small changes in input parameters can lead to large
variations in the outcomes, making it challenging to provide definitive predictions.

• Human Behavior: Modeling human migration involves understanding and pre-
dicting complex social behaviors, which are difficult to quantify and often lack
reliable data.

Strategies to Deal with It:

• Monte Carlo Simulations: Use Monte Carlo simulations to explore a wide
range of possible outcomes and quantify the uncertainty in predictions.

• Scenario Analysis: Develop multiple scenarios based on different assumptions
and input parameters to provide a range of possible outcomes.

• Incorporate Behavioral Models: Integrate behavioral models and expert
opinions to better understand and predict human migration patterns.

9.3 Data Availability and Quality

Challenge: The accuracy of the models depends heavily on the availability and
quality of input data. Climate data at a high spatial and temporal resolution may be
limited, and migration data, especially in less developed regions, may be incomplete or
unreliable.

Why it’s Hard:

• Data Gaps: There may be significant gaps in the historical data needed to
calibrate the models.

• Data Resolution: High-resolution data may be available for some regions but
not others, leading to inconsistencies in the model.

• Data Validation: Ensuring the data used is accurate and validated is challeng-
ing, especially when relying on multiple sources with varying reliability.

Strategies to Deal with It:

• Data Augmentation: Use data augmentation techniques such as synthetic data
generation or downscaling to fill in gaps in the data.
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• Cross-validation: Implement cross-validation techniques to ensure the robust-
ness of the data and models.

• Collaborations: Collaborate with data providers and institutions to access the
most accurate and up-to-date data possible.

9.4 Policy and Ethical Considerations

Challenge: The use of these models to inform policy decisions involves ethical
considerations, particularly when predicting large-scale migrations that could disrupt
societies. The models could be used to justify policies that may have adverse effects on
vulnerable populations.

Why it’s Hard:

• Impact on Vulnerable Populations: The potential for displacement and the
impact on vulnerable populations raise ethical concerns.

• Policy Implications: The results of the models may be used to influence policy
decisions, making it critical that the models are as accurate and unbiased as
possible.

• Public Perception: The way the results are communicated to the public and
policymakers can have significant consequences.

Strategies to Deal with It:

• Ethical Review: Incorporate an ethical review process into the development
and use of the models to ensure that potential negative impacts are considered
and mitigated.

• Transparent Communication: Ensure that the results are communicated trans-
parently, with clear explanations of the uncertainties and assumptions involved.

• Stakeholder Engagement: Engage with stakeholders, including affected com-
munities, to ensure that the models are used in a way that is fair and equitable.

9.5 Conclusion

The development of models to predict human migration due to climate change
involves significant challenges, both technical and non-technical. By addressing the
integration of models, managing uncertainty, ensuring data quality, and considering
ethical implications, the team can develop robust and useful tools to inform policy
decisions in the face of climate change.

10 Ecologist Fall 2019

Continuous population modeling. Let x(t) ≥ 0 be a continuous variable that
estimates the size of an insect population at time t, also continuous, and let x0 ≡ x(0)
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be the initial value at time t = 0. Suppose that this population changes over time
according to

dx

dt
= r(t)x(t), (10)

where r(t) is the rate of growth, which can also vary in time. Observe that when that
rate is constant, e.g., r(t) = α0, then the solution is x(t) = x0e

α0t, which expresses the
idea of exponential growth (when α0 > 0) or decay (α0 < 0).
a. In the logistic model of population growth, r(t) is not constant, but rather defined
by

r(t) ≡ α0

(
1− x(t)

β0

)
, (11)

where α0 is a constant growth rate and β0 is the carrying capacity of the population.
Explain how one can interpret the logistic model and these constants.
b. An ecologist (someone who studies the relationships of organisms to their natural
environments or habitats) has modified the basic logistic model to include an additional
term, p(x), defined as

p(x) =
x2

1 + x2
(12)

and
dx

dt
= r(t)− p(x). (13)

Explain how this new term changes the model. For full credit, your response should
include precise statements based on a detailed analysis of this model.

10.1 Interpretation of the Logistic Model

The logistic model of population growth is defined by the differential equation:

dx

dt
= r(t)x(t)

where the growth rate r(t) is given by:

r(t) ≡ α0

(
1− x(t)

β0

)
Here, α0 is the intrinsic growth rate, and β0 is the carrying capacity of the environment.

Interpretation:

• Intrinsic Growth Rate (α0): This is the maximum rate at which the population
can grow when it is far below the carrying capacity. If α0 > 0, the population has
the potential to grow, and if α0 < 0, the population naturally tends to decline.

• Carrying Capacity (β0): This is the maximum population size that the en-
vironment can sustain. As x(t) approaches β0, the growth rate r(t) decreases,
eventually reaching zero when x(t) = β0. At this point, the population stops
growing because it has reached the carrying capacity.
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• Logistic Growth: The logistic model predicts that when the population is small
relative to the carrying capacity, it will grow approximately exponentially (since

1 − x(t)
β0

is close to 1). As the population increases and approaches the carrying

capacity, the growth rate slows down, leading to a sigmoidal (S-shaped) growth
curve.

The solution to the logistic equation is known to be:

x(t) =
β0

1 +
(

β0−x0

x0

)
e−α0t

where x0 is the initial population size.

10.2 Analysis of the Modified Model

The modified model introduces a new term p(x) defined by:

p(x) =
x2

1 + x2

and modifies the population growth equation to:

dx

dt
= r(t)x(t)− p(x)

where r(t) is as defined in the logistic model.
Interpretation of p(x):

• Additional Term p(x): The term p(x) represents an additional factor that slows
down the growth of the population. As x increases, p(x) increases, approaching 1
as x becomes large. This term can be interpreted as representing factors such as
resource depletion, disease, or increased competition that becomes more signifi-
cant as the population grows.

• Effect on Population Dynamics:

– When x is small, p(x) is small, so the population growth is similar to the
original logistic model.

– As x increases, p(x) increases, reducing the effective growth rate. When x is
very large, p(x) approaches 1, which could slow down or even halt population
growth, depending on the value of r(t).

Detailed Analysis:

• For small x: p(x) ≈ x2

1
= x2, which is negligible compared to r(t)x(t), so the

population grows almost as it would under the logistic model.

• For large x: p(x) ≈ 1, so the equation becomes dx
dt

≈ r(t)x(t) − 1. This can
significantly slow down the population growth or even cause the population to
decline if r(t)x(t) < 1.
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• Long-term Behavior: The modified model suggests that there is a limiting
effect on the population size even beyond the carrying capacity β0 due to the p(x)
term. This term could represent a form of population regulation that becomes
significant when the population is large, possibly due to factors like resource
limitation, social stress, or other density-dependent factors.

10.3 Conclusion

The logistic model describes population growth with a simple carrying capacity,
while the modified model introduces a new term that further limits growth as the
population size increases. This additional term could represent environmental feedback
mechanisms that prevent the population from growing indefinitely, even if the carrying
capacity has not been reached.

11 Stadium Evacuation (Fall 2019)

Simulation model design. You need to develop a strategy to evacuate a large
stadium such as Mercedes-Benz stadium (where the Atlanta Falcons play American
football) in an emergency situation such as a fire occurring in one portion of the stadium.
The metric you are concerned with is the amount of time needed to completely evacuate
the stadium. You are to develop a simulation model to evaluate alternate evacuation
approaches. Describe the simulation model you would develop to attack this problem.
What type of modeling approach would you use (queueing model, cellular automata,
differential equations, etc.)? Justify your answer relative to alternate approaches. What
are the key state variables and parameters used by the model? What data would you
need to collect in order to create a credible model? How would you validate your model,
given that performing an actual evacuation is not practical.

11.1 Choosing the Modeling Approach

For this problem, a cellular automata (CA) model is a suitable choice. The CA
model is appropriate for simulating the movement of individuals in a confined space,
such as a stadium, where crowd dynamics and interactions are critical.

Justification for Cellular Automata:

• Scalability: CA models can represent the large number of individuals present in
a stadium, each occupying a cell in a grid.

• Realistic Crowd Movement: CA allows for modeling the movement of indi-
viduals based on local rules, such as moving toward exits, avoiding obstacles, and
interacting with other individuals.

• Flexibility: The model can incorporate different scenarios, such as varying the
number of exits, changing exit routes, or introducing obstacles like fire or smoke.

• Computational Efficiency: CA models are computationally efficient, enabling
the simulation of large crowds in real-time or near-real-time.
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Alternative Approaches:

• Queueing Models: While queueing models are useful for analyzing bottlenecks
at exits, they do not capture the complex dynamics of crowd movement within
the stadium.

• Differential Equations: These models can describe the overall flow of people
but may not accurately represent individual behaviors and interactions within a
dense crowd.

11.2 Key State Variables and Parameters

State Variables:

• Position of Individuals: The location of each individual in the stadium grid.

• Movement Speed: The speed at which individuals move toward exits, which
may vary based on crowd density.

• Evacuation Status: Whether an individual has reached an exit and is considered
evacuated.

• Crowd Density: The number of individuals in a given area, which can affect
movement speed and decision-making.

• Exit Accessibility: Whether an exit is accessible or blocked due to fire or other
obstacles.

Parameters:

• Stadium Layout: Detailed map of the stadium, including seating arrangements,
exits, and obstacles.

• Number of Exits: The number and location of available exits.

• Initial Population Distribution: The initial distribution of individuals in the
stadium, including their location and density.

• Movement Rules: Rules governing how individuals move towards exits, includ-
ing factors like proximity to exits, crowding, and obstacles.

• Emergency Conditions: Conditions such as the location of the fire, smoke
spread, and blocked exits.

11.3 Data Collection

To create a credible model, the following data would be required:

• Stadium Layout: A detailed architectural plan of the stadium, including all
entrances, exits, seating areas, corridors, and potential obstacles.
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• Population Data: Information on the maximum capacity of the stadium, typical
occupancy during events, and the distribution of people within the stadium during
an event.

• Movement Patterns: Data on how people typically move within the stadium,
including walking speeds, response to emergencies, and how they interact with
others in a crowd.

• Exit Usage: Historical data on how exits are used during evacuations or in pre-
vious emergency drills, including which exits are preferred and which are avoided.

• Emergency Response Data: Information on how fires or other emergencies
typically develop within a stadium, including the speed of fire spread, smoke
dispersion, and the effectiveness of emergency protocols.

11.4 Model Validation

Given that performing an actual evacuation is not practical, the model can be
validated through the following methods:

• Historical Data Comparison: Compare the model’s predictions with data
from past evacuations or emergency drills, if available. This can help ensure that
the model accurately represents real-world scenarios.

• Sensitivity Analysis: Perform sensitivity analysis to understand how changes
in key parameters, such as the number of exits or crowd density, affect evacuation
time. This can help validate the model’s robustness.

• Expert Review: Engage with experts in crowd dynamics, fire safety, and emer-
gency management to review the model’s assumptions, parameters, and results.
Their feedback can help identify potential weaknesses in the model.

• Simulation Scenarios: Run the model under various hypothetical scenarios,
such as different fire locations, blocked exits, or varying crowd sizes, to ensure
that it behaves as expected under different conditions.

11.5 Conclusion

By using a cellular automata model, the evacuation of a large stadium can be
effectively simulated, taking into account the complex interactions between individuals,
the stadium layout, and emergency conditions. The model’s credibility will depend on
accurate data input and thorough validation through comparison with historical data,
expert review, and scenario analysis.
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